Skip to main content

Advertisement

Log in

From Aminolysis Product of PET Waste to Novel Biodegradable Polyurethanes

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Chemical recycling of PET has been developed by various methods. Aminolysis is one of chemical recycling methods of PET has been developed recently. The obtained product using aminolysis, Bis (2-hydroxy ethylene) terephthalamide (BHETA), has the potential for further reactions to obtain useful products. There are few reports on usage of recycled BHETA from PET waste to synthesis of polyurethanes. On the other hand, various biodegradable polyurethanes have been synthesized using polycaprolactone diol. Therefore, caprolactone is a new potential in synthesis of biodegradable polyurethanes from PET waste. In this work, novel biodegradable polyurethanes have been synthesized using BHETA. In this order, at first polyols with different molecular weights have been synthesized through ring opening polymerization of caprolactone by BHETA, then urethane linkages were formed using HDI (Hexamethylene Diisocyanate) without chain extender. Chemical, thermal, mechanical and dynamic mechanical properties, biodegradability, morphology and UV resistance of synthesized polyurethanes have been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 3

Similar content being viewed by others

References

  1. Kloss J, Fernanda SM, Souza D, Edilsa R, Silva D, Jair Alves D, Leni A, Soˆnia Faria Z (2006) Macromol Symp 245–246: 651–656

  2. Shukla SR, Harad AM, Jawale LS (2009) Polym Deg Stab 94:604–609

    Article  CAS  Google Scholar 

  3. Sivaram S (1997) National seminar on recycling and plastics waste management 24–26 Sep, pp 283–288

  4. Barbozaa ES, Lopez DR, Amico SC, Ferreira CA (2009) Resour Concerv Recy 53:122

    Article  Google Scholar 

  5. Pusztaszeri SF (1982) US Patent 4355175

  6. Mishra S, Goje AS, Zope VS (2003) Poly Plastics Technol Eng 42(4):581–603

    Article  CAS  Google Scholar 

  7. Mishra S, Goje AS, Zope VS (2003) Polym React Eng 11(1):79–99

    Article  CAS  Google Scholar 

  8. Schwartz J (1995) US Patent 5395858

  9. Lamparter RA, Barna BA, Johnsrud DR (1985) US Patent 4542239

  10. Tindall GW, Perry RL (1991) US Patent 5045122

  11. Mishra S, Goje AS (2003) Polym React Eng 11(4):963–987

    Article  CAS  Google Scholar 

  12. Doerr ML (1986) US Patent 4578510

  13. Yang Y, Lu Y, Xiang H, Xu Y, Li Y (2002) Polym Degrad Stabil 75:185–191

    Article  CAS  Google Scholar 

  14. Motonobu G, Hiroshi K, Akio K, Tsutomu H, Shoji N (2002) J Phys Conden Matter 14(44):11427–11430

    Article  Google Scholar 

  15. Motonobu G, Hiroshi K, Akio K, Tsutomu H, Shoji N, McCoy BJ (2002) Alche J 48(1):136–144

    Article  Google Scholar 

  16. Akiharu F, Minako S, Masashige M (1986) US Patent 4609680

  17. Ostrowski HS (1975) US Patent 3884850

  18. Güçlü G, Kasgöz A, Özbudak S, Özgümüs S, Orbay M (1998) J Appl Polym Sci 69(12):23–2319

    Article  Google Scholar 

  19. Andrej K (1998) J Appl Polym Sci 69(6–8):1115–1118

    Google Scholar 

  20. Berti C, Colonna M, Fiorini M, Lorenzetti C, Marchese P (2004) Macromol Mater Eng 289:49–55

    Article  CAS  Google Scholar 

  21. Manfred K, Wolfgang S, Uwe S (1993) US Patent 5266601

  22. Shukla SR, Harad AM (2006) Polym Degrad Stab 91:1850–1854

    Article  CAS  Google Scholar 

  23. Fabrycy E, Leistner A, Spychaj T (2000) Adhesion 44(4):35

    CAS  Google Scholar 

  24. Zahn H, Pfeifer H (1963) Polymer 4:429–432

    Article  CAS  Google Scholar 

  25. Popoola V (1998) J Appl Polym Sci 36:1677–1683

    Article  Google Scholar 

  26. Blackmon KP, Fox DW, Shafer SJ (1990) US Patent 4973746

  27. Shamsi R, Abdouss M, Mir Mohamad Sadeghi G, Afshar Taromi F (2009) Polym Int 58:22–30

    Article  CAS  Google Scholar 

  28. Aslzadeh MM, Mir M Sadeghi G, Abdouss M (2010) Mat-Wiss U Werkstofftech 41(8): 682–688

    Google Scholar 

  29. Yeganeh H, Jamshidi H, Jamshidi S (2007) Polym Int 56:41–49

    Article  CAS  Google Scholar 

  30. Heijkantsa R, Calcka R, Tienenb T, Groota J, Bumab P, Penningsa A, Veth RPH (2005) AJ Schouten: Biomat 26:4219–4228

    Google Scholar 

  31. Borda J, Ke′ki S, Bodna′r I, Ne′meth N, Zsuga M (2006) Polym Adv Technol 17: 945–953

    Google Scholar 

  32. Liu C, Gu Y, Qian Z, Fan L, Li J, Chao G, Tu M, Jia W (2005) J Biomed Mat Res 75A:465–471

    Article  CAS  Google Scholar 

  33. Cohn D, Stern T, Gonza′lez M, Epstein JJ (2002) Biomed Mat Res 59:273–281

    Article  CAS  Google Scholar 

  34. Jiang X, Li J, Ding M, Tan H, Ling Q, Zhong Y, Fu Q (2007) Eur Polym J 43:1838–1846

    Article  CAS  Google Scholar 

  35. Xie Z, Lu C, Chen X, Chen L, Hu X, Shi Q, Jing X (2007) Eur Polym J 43:2080–2087

    Article  CAS  Google Scholar 

  36. Gorna K, Gogolewski S (2002) Polym Degrad Stabil 75:113–122

    Article  CAS  Google Scholar 

  37. Yen M, Kuo S (1998) J Polym Res 5:125–131

    Article  CAS  Google Scholar 

  38. Wang W, Ping P, Yu H, Chen X, Jing X (2006) J Polym Sci Pol Chem 44:5505–5512

    Article  CAS  Google Scholar 

  39. Nagata M, Kato K, Sakai W, Tsutsumi N (2006) Macromol Biosci 6:333–339

    Article  CAS  Google Scholar 

  40. Kloss J, Souza F, Silva E, Dionı′sio J, Akcelrud L, Zawadzki S (2006) Macromol Symp 245–246:651–656

    Article  Google Scholar 

  41. Hassan MK, Mauritz KA, Storey RF, Wiggins JS (2006) J Polym Sci Pol Chem 44:2990–3000

    Article  CAS  Google Scholar 

  42. Gorna K, Polowinski S, Gogolewski S (2002) J Polym Sci Pol Chem 40:156–170

    Article  CAS  Google Scholar 

  43. Skarja GA, Woodhouse KA (2000) J Appl Polym Sci 75:1522–1534

    Article  CAS  Google Scholar 

  44. Ping P, Wang W, Chen X, Jing X (2007) J Polym Sci Pol Phys 45:557–570

    Article  CAS  Google Scholar 

  45. Lusinchi JM, Pietrasanta Y, Robin JJ, Boutevin B (1998) J Appl Polym Sci 69:657–665

    Article  CAS  Google Scholar 

  46. Magnusson AB (1967) J Appl Polym Sci 11:2175–2188

    Article  CAS  Google Scholar 

  47. Zia KM, Barikani M, Bhatti IA, Zuber M, Bhatti HN (2008) J Appl Polym Sci 110:769–776

    Article  CAS  Google Scholar 

  48. Szycher S (1999) Handbook of polyurethanes, Chap. 11. CRC Press, FL

  49. Cooper W, Pearson RW, Darke S (1960) The Industrial chemist. pp 121–126

  50. Gogolewski S (1989) Colloid Polym Sci 267:757–785

    Article  CAS  Google Scholar 

  51. Petrovic ZS, Ferguson J (1991) J Prog Polym Sci 16:695–836

    Article  CAS  Google Scholar 

  52. Mark HF (1998) Ency Polym Sci Tech, 2nd ed. Wiley, New York, 1988:13

  53. Kogon IC (1961) J Org Chem 26:3004–3005

    Article  CAS  Google Scholar 

  54. Ulrich HJ (1976) J Polym Sci Macroml Rev 11:93–133

    Article  CAS  Google Scholar 

  55. Lyman DJ (1966) Rev Macromol Chem 1: 191–196

    Google Scholar 

  56. Data Sheet of polycaprolactone product, Sigma-Aldrich, www.sigma-aldrich.com

  57. Wunderlich B (1980) Macromolecular physics, crystal melting. Academic Press, New York

    Google Scholar 

  58. Kloss J, Munaro M, De Souza GP, Gulmine JV, Wang SH, Zawadzki S, Akcelrud L (2002) J Polym Sci Part A Polym Chem 40:4117–4130

    Article  CAS  Google Scholar 

  59. Downing JW, Newell JA (2004) J Appl Polym Sci 91:417–424

    Article  CAS  Google Scholar 

  60. Rein G (2005) Ph.D. Thesis, Uni Cal. Berkeley, http://repositories.cdlib.org/cpl/fs/ReinPhD05

  61. Semsarzadeh MA, Navarchian AH (2003) J Appl Polym Sci 90:963–972

    Article  CAS  Google Scholar 

  62. Van Bogart JWC, Gibson PE, Cooper SL (1983) J Polym Sci Polym Phy 21:65–95

    Article  Google Scholar 

  63. Van Bogart JWC, Rluemke DA, Cooper SL (1981) Polymer 22:1428

    Article  Google Scholar 

  64. Von Jacobs H, Jenckel E (1961) Makromol Chem 43:132

    Article  CAS  Google Scholar 

  65. Seefried CG, Koleske JV, Critchfield FE (1975) J App Polym Sci 19:2493–2502

    Article  CAS  Google Scholar 

  66. Izuka A, Winter HH, Hashimoto T (1992) Macromolecules 25:2422–2428

    Article  CAS  Google Scholar 

  67. Heijkants RGJC, Schwab LW, Van Calck RV, De Groot JH, Pennings AJ, Schouten AJ (2005) Polymer 4:8981–8989

    Article  Google Scholar 

  68. Rutkowska M, Krasowska K, Heimowska A, Steinka L, Janik H, Haponiuk J, Karlsson S (2002) Pol J Envir Stu 11(4):413–420

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gity Mir Mohamad Sadeghi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mir Mohamad Sadeghi, G., Shamsi, R. & Sayaf, M. From Aminolysis Product of PET Waste to Novel Biodegradable Polyurethanes. J Polym Environ 19, 522–534 (2011). https://doi.org/10.1007/s10924-011-0283-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-011-0283-7

Keywords

Navigation