Skip to main content
Log in

Bio-Treatment of Natural Fibers in Isolation of Cellulose Nanofibres: Impact of Pre-Refining of Fibers on Bio-Treatment Efficiency and Nanofiber Yield

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Biodegradability, renewability and high specific strength properties of cellulose nanofibres and microfibrils have made them very attractive in nano-biocomposite science. Treatment of natural fibers with suitable enzymes or fungus has been found to substantially alleviate the high energy requirement associated with the isolation of cellulose nanofibers via high shear refining and subsequent cryocrushing. This article briefly describes a novel enzymatic fiber pretreatment developed to facilitate the isolation of cellulose nanofibres and explores the effect of pre-refining of fibers on the effectiveness of bio-treatment. Soft wood Kraft pulp was pre-sheared to different degree and treated with a genetically modified fungus isolated from fungus infected Dutch elm tree. Cellulose nanofibres were isolated from these treated fibers by high shear refining. The percentage yield of nanofibres from pre-refined fibers in the less than 50 nm range showed a substantial increase and at the same time the number of revolutions required during the high shear refining to attain a comparable level of nanofibres isolation decreased. This observation may be attributed to the better fiber internal accessibility of the enzymes due to loosening up of the fibers and increased number of fiber ends as a result of pre-refining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Payen A (1838) Comptes Rendus 7:1052

    Google Scholar 

  2. Clowes FAL, Juniper BE (1968) Plant cells. Blackwell Scientific Publications, Oxford

    Google Scholar 

  3. Liang CY, Marchessault RH (1959) J Polym Sci 37:385–395

    Article  CAS  Google Scholar 

  4. Sakurada I, Nukushina Y, Ito T (1962) J Polym Sci 57:651–660

    Article  CAS  Google Scholar 

  5. Wainwright SA, Biggs WD, Currey JD, Gosline JM (1982) Mechanical design in organisms. Princeton University Press, Princeton

    Google Scholar 

  6. Tashiro K, Kobayashi M (1991) Polymer 32(8):1516–1526

    Article  CAS  Google Scholar 

  7. Berglund LA (2004) In: Mohanthy MAD (ed) Naturalfibers, biopolymers and biocomposites. CRC Press LLC, pp 807–882

  8. Turbak AF, Snyder FW, Sandberg KR (1983) J Appl Polym Sci Appl Polym Symp 37:815–827

    CAS  Google Scholar 

  9. Alemdar A, Sain M, Oksman K (2007) Proceedings of ninth international conference on wood and bio-fibre plastic composites, Madison, Wisconsin, USA

  10. Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Bioresources 3(3):929–980

    Google Scholar 

  11. Chakroborty A, Sain M, Kortschot M (2007) J Biobased Mat Bioenergy 1(1):71–77

    Google Scholar 

  12. Fukuzumi H, Saito T, Iwata T, Kumamoto T, Isogai A (2009) Biomacromolecules 10(1):162–165

    Article  CAS  Google Scholar 

  13. Wang B, Sain M (2007) Bioresources 2(3):371–388

    CAS  Google Scholar 

  14. Alemdar A, Sain M (2008) Bioresour Technol 99(6):1664–1671

    Article  CAS  Google Scholar 

  15. Alemdar A, Sain M (2008) Comp Sci Technol 68:557–565

    Article  CAS  Google Scholar 

  16. Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibres: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102–107

    Article  CAS  Google Scholar 

  17. Bolaski W, Gallatin A, Gallatin JC (1959) Enzymatic conversion of cellulosic fibers. United States Patent 3, 041:246

    Google Scholar 

  18. Yerkes WD (1968) Process for the digestion of cellulosic materials by enzymatic action of Trametes suaveolens. United States Patent 3, 406: 089

    Google Scholar 

  19. Nomura Y (1985) Digestion of pulp. Japanese Patent 126, 395/85

  20. Fuentes JL, Robert M (1988) Process of treatment of a paper pulp by an enzymic solution, European Patent 262040

  21. Uchimoto I, Endo K, Yamagishi Y (1988) Improvement of deciduous tree pulp. Japanese Patent 135, 597/88

  22. Paice MG, Jurasek L (1984) Removing hemicellulose from pulps by specific enzymic hydrolysis. J Wood Chem Technol 4(2):187–198

    Article  CAS  Google Scholar 

  23. Senior DJ, Mayers PR, Miller D, Sutcliffe R, Tan L, Saddler JN (1988) Selective solubilization of xylan in pulp using a purified xylanase from Trichoderma harzianum. Biotechnol Lett 10:907–912

    Article  CAS  Google Scholar 

  24. Jurasek L, Paice MG (1988) Biological treatment of pulps. Biomass 15:103–108

    Article  CAS  Google Scholar 

  25. Nazareth S, Mavinkurve S (1987) Laboratory studies on retting of coconut husk. Int Biodeter 23:343–355

    Article  CAS  Google Scholar 

  26. Sharma HSS (1987) Screening of polysaccharide-degrading enzymes for retting flax stems. Int Biodeter 23:181–186

    Article  CAS  Google Scholar 

  27. Morvan C, Jauneau A, Flaman A, Millet J, Demarty M (1990) Degradation of flax polysaccharides with purified endo-polygalacturonidase. Carbohyd Polym 13:149–163

    Article  CAS  Google Scholar 

  28. Tolan JS, Canovas RV (1992) The use of enzymes to decrease the Cl2 requirements in pulp bleaching. Pulp Paper Can 93:39–42

    CAS  Google Scholar 

  29. Scott BP, Young F, Paice MG (1993) Mill-scale enzyme treatment of a softwood kraft pulp prior to bleaching. Pulp Paper Can 94:57–61

    CAS  Google Scholar 

  30. Viikari L, Kantelinen A, Poutanen K, Ranua M (1990) Characterization of pulps treated with hemicellulolytic enzymes prior to bleaching. In: Kirk TK, Chang H-m (eds) Biotechnology in pulp and paper manufacture. Butterworth-Heinemann, Boston, pp 145–151

    Google Scholar 

  31. Janardhnan S, Sain M (2006) Isolation of cellulose microfibrils: an enzymatic approach. Bio-Resources 1(2):176–188

    Google Scholar 

  32. Zobel B, McElvee R (1966) J Tappi J 49(9):383–387

    CAS  Google Scholar 

  33. Phillips FH, Bain RB, Watson AJ (1970) Appita 23(5):341–354

    CAS  Google Scholar 

  34. Watson AJ, Phillips FH (1964) Appita 18(3):84–102

    CAS  Google Scholar 

  35. Murphy DC (1990) Appita 16(1):16–30

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support of Natural Science and Engineering Research Council of Canada—BIOCAP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreekumar Janardhnan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janardhnan, S., Sain, M. Bio-Treatment of Natural Fibers in Isolation of Cellulose Nanofibres: Impact of Pre-Refining of Fibers on Bio-Treatment Efficiency and Nanofiber Yield. J Polym Environ 19, 615–621 (2011). https://doi.org/10.1007/s10924-011-0312-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-011-0312-6

Keywords

Navigation