Skip to main content
Log in

Aging of Toughened Polylactic Acid Nanocomposites: Water Absorption, Hygrothermal Degradation and Soil Burial Analysis

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The environmental aging behaviour of montmorillonite (MMT) filled polylactic acid (PLA) nanocomposites (PLA/MMT) and linear low density polyethylene (LLDPE)-toughened PLA (PLA/LLDPE ratio = 90/10) nanocomposites (PLA/LLDPE/MMT) were investigated in this study. The nanocomposites were subjected to water absorption, hygrothermal degradation and soil burial analysis. Both PLA/MMT and PLA/LLDPE/MMT nanocomposites were immersed in distilled water at three different temperatures (room temperature, 60, and 90 °C) and the weight difference before and after immersion was calculated. The kinetics of water absorption for both nanocomposites followed the Fick’s second law of diffusion, where a linear relationship exists between the initial moisture absorption at any time t and t 1/2 (the square root of time), followed by a horizontal plateau (saturation). The equilibrium moisture content (M m ) and diffusion coefficient (D) of PLA nanocomposites increased with the addition of MMT (2 phr) and LLDPE. However, the D values of both nanocomposites decreased by increasing MMT (4 phr). The M m for PLA/MMT and PLA/LLDPE/MMT nanocomposites increased by increasing immersion temperature (60 °C) and prolonged immersion resulted in hygrothermal degradation of both nanocomposites. The hygrothermal degradation studies showed that PLA degrades much faster at 90 °C as compared to 60 °C in both the nanocomposites. The addition of MMT and LLDPE improved the hygrothermal stability of PLA in both nanocomposites. Soil burial test revealed deterioration of impact strength in all samples while the rate of biodegradation was retarded in the presence of MMT and LLDPE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hu RH, Sun MY, Lin JK (2010) Moisture absorption, tensile strength and microstructure evolution of short jute fiber/polylactide composite in hygrothermal environment. Mater Des 31(7):3167–3173

    Article  CAS  Google Scholar 

  2. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    Article  CAS  Google Scholar 

  3. Pluta M, Jeszka JK, Boiteux G (2007) Polylactide/montmorillonite nanocomposites: structure, dielectric, viscoelastic and thermal properties. Eur Polym J 43:2819–2835

    Article  CAS  Google Scholar 

  4. Ray SS, Maiti P, Okamoto M, Yamada K, Ueda K (2002) New polylactide/layered silicate nanocomposites. 1. Preparation, characterization, and properties. Macromolecules 35:3104–3110

    Article  CAS  Google Scholar 

  5. Pluta M, Galeski A, Alexandre M, Paul MA, Dubois P (2002) Polylactide/montmorillonite nanocomposites and microcomposites prepared by melt blending: structure and some physical properties. J Appl Polym Sci 86:1497–1506

    Article  CAS  Google Scholar 

  6. Grizzi I, Garreau H, Li S, Vert M (1995) Hydrolytic degradation of devices based on poly(dl-lactic acid) size-dependence. Biomaterials 16(4):305–311

    Article  CAS  Google Scholar 

  7. Gonzalez MF, Ruseckaite RA, Cuadrado TR (1999) Structural changes of polylactic acid (PLA) microspheres under hydrolytic degradation. J Appl Polym Sci 71:1223–1230

    Article  CAS  Google Scholar 

  8. Bovberg Y, Schnabelrauch M, Vogt S, Sanchez MS, Ferrer GG, Pradas MM, Anton JS (2006) Effect of hydrophilicity on the properties of degradable polylactide. J Polym Sci Part B Polym Phys 44:656–664

    Article  Google Scholar 

  9. Proikakis CS, Mamouzelos NJ, Tarantili PA, Andreopoulos AG (2006) Swelling and hydrolytic degradation of poly (d, l-lactic acid) in aqueous solutions. Polym Degrad Stab 91:614–619

    Article  CAS  Google Scholar 

  10. Paul MA, Delcourt C, Alexandre M, Degée Ph, Monteverde F, Dubois Ph (2005) Polylactide/montmorillonite nanocomposites: study of the hydrolytic degradation. Polym Degrad Stab 87:535–542

    Article  CAS  Google Scholar 

  11. Yew GH, Mohd Yusof AM, Mohd Ishak ZA, Ishiaku US (2005) Water absorption and enzymatic degradation of polylactic acid/rice starch composites. Polym Degrad Stab 90:488–500

    Article  CAS  Google Scholar 

  12. Chow WS, Abu Bakar A, Mohd Ishak ZA (2005) Water absorption and hygrothermal aging study on organomontmorillonite reinforced polyamide 6/polypropylene nanocomposites. J Appl Polym Sci 98:780–790

    Article  CAS  Google Scholar 

  13. Mohd Ishak ZA, Berry J (1994) Hygrothermal aging studies of short carbon fiber reinforced nylon 6.6. J Appl Polym Sci 51:2145–2155

    Article  CAS  Google Scholar 

  14. Seltzer R, Frontini PM, Mai YM (2009) Effect of hygrothermal ageing on morphology and indentation modulus of injection moulded nylon 6/organoclay nanocomposites. Compost Sci Technol 69(7–8):1093–1100

    Article  CAS  Google Scholar 

  15. Pegoretti A, Penati A (2004) Recycled poly(ethylene terephthalate) and its short glass fibres composites: effects of hygrothermal aging on the thermo-mechanical behavior. Polymer 45:7995–8004

    Article  CAS  Google Scholar 

  16. Mohd Ishak ZA, Yow BN, Ng BL, Khalil HPSA, Rozman HD (2001) Hygrothermal aging and tensile behavior of injection-molded rice husk-filled polypropylene composites. J Appl Polym Sci 81:742–753

    Article  CAS  Google Scholar 

  17. Yang DK, Koros WJ, Hopfenberg HB, Stannett VT (1986) The effect of morphology and hygrothermal aging on water sorption and transport in Kapton® polyimide. J Appl Polym Sci 31:1619–1629

    Article  CAS  Google Scholar 

  18. Balakrishnan H, Hassan A, Wahit MU (2010) Mechanical, thermal and morphological properties of polylactic acid/linear low density polyethylene blends. J Elast Plast 42(3):223–239

    Article  CAS  Google Scholar 

  19. Balakrishnan H, Hassan A, Wahit MU, Yussuf AA, Shamsul Bahri AR (2010) Novel toughened polylactic acid nanocomposites: mechanical, thermal and morphological properties. Mater Des 31(7):3289–3298

    Article  CAS  Google Scholar 

  20. Kusmono (2008) Effects of clay modification and compatibilizers on the mechanical, morphological and thermal properties of polyamide 6/polypropylene nanocomposites. Master Thesis, Universiti Sains Malaysia, Malaysia

  21. Alexander M, Dubois Ph (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mat Sci Eng 28(1–2):1–68

    Google Scholar 

  22. Liu X, Wu Q, Berlund LA, Fan J, Qi Z (2001) Polyamide 6-clay nanocomposite/polypropylene grafted maleic anhydride alloys. Polymer 42:8235–8239

    Article  CAS  Google Scholar 

  23. Kim J, Hu C, Woo SCR, Sham M (2005) Moisture barrier characteristics of organoclay-epoxy nanocomposites. Compost Sci Technol 65(5):805–813

    Article  CAS  Google Scholar 

  24. Mohd Ishak ZA, Ishiaku US, Karger-Kocsis J (2000) Hygrothermal aging and fracture behavior of short-glass-fiber-reinforced rubber-toughened poly(butylene terephthalate) composites. Compost Sci Technol 60:803–815

    Article  CAS  Google Scholar 

  25. Tsuji H, Ikada Y (2000) Properties and morphology of poly(l-lactide). 4. Effects of structural parameters on long-term hydrolysis of poly(l-lactide) in phosphate-buffered solution. Polym Degrad Stab 67:179–189

    Article  CAS  Google Scholar 

  26. Vert M, Schwach G, Coudane J (1995) Present and future of PLA polymer. J Mat Sci Pure Appl Chem 32(4):787–796

    Article  Google Scholar 

  27. Hakkarainen M (2001) Aliphatic polyesters: abiotic and biotic degradation and degradation products. Adv Polym Sci 157:113–138

    Article  Google Scholar 

  28. Siparsky GL, Voorhees KJ, Dorgan JR, Schilling K (1997) Water transport in polylactic acid (PLA), PLA/polycaprolactone copolymers, and PLA/polyethylene glycol blends. J Environ Polym Degrad 5(3):125–136

    CAS  Google Scholar 

  29. Yussuf AA, Massoumi I, Hassan A (2010) Comparison of polylactic acid/kenaf and polylactic acid/rice husk composites: the influence of the natural fibers on the mechanical, thermal and biodegradability properties. J Polym Environ 18(3):422–429

    Article  CAS  Google Scholar 

  30. Teramoto N, Urata K, Ozawa K, Shibata M (2004) Biodegradation of aliphatic polyester composites reinforced by abaca fiber. Polym Degrad Stab 86:401–409

    Article  CAS  Google Scholar 

  31. Shogren RL, Doane WM, Garlotta D, Lawton JW, Willett JL (2010) Biodegradation of starch/polylactic acid/poly(hydroxyester-ether) composite bars in soil. Polym Degrad Stab 79:405–411

    Article  Google Scholar 

  32. Shibata M, Oyamada S, Kobayashi S, Yaginuma D (2004) Mechanical properties and biodegradability of green composites based on biodegradable polyesters and lyocell fabric. J Appl Polym Sci 92:3857–3863

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Ministry of Science, Technology and Innovation (MOSTI), Malaysia for an E-Science grant (No. 79162).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azman Hassan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balakrishnan, H., Hassan, A., Imran, M. et al. Aging of Toughened Polylactic Acid Nanocomposites: Water Absorption, Hygrothermal Degradation and Soil Burial Analysis. J Polym Environ 19, 863–875 (2011). https://doi.org/10.1007/s10924-011-0338-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-011-0338-9

Keywords

Navigation