Skip to main content
Log in

Poly(Lactic Acid) Blended with Cellulolytic Enzyme Lignin: Mechanical and Thermal Properties and Morphology Evaluation

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

“Green”/bio-based blends of poly(lactic acid) (PLA) and cellulolytic enzyme lignin (CEL) were prepared by twin-screw extrusion blending. The mechanical and thermal properties and the morphology of the blends were investigated. It was found that the Young’s modulus of the PLA/CEL blends is significantly higher than that of the neat PLA and the Shore hardness is also somewhat improved. However, the tensile strength, the elongation at break, and the impact strength are slightly decreased. Thermogravimetric analysis (TGA) shows that the thermal stability of the PLA is not significantly affected by the incorporation of the CEL, even with 40 wt% CEL. The results of FT-IR and SEM reveal that the CEL and the PLA are miscible and there are efficient interactions at the interfaces between them. These findings show that the CEL is a kind of feasible filler for the PLA-based blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Amass W, Amass A, Tighe B (1998) Polym Int 47:89

    Article  CAS  Google Scholar 

  2. Inoue Y, Yoshie N (1992) Prog Polym Sci 17:571

    Article  CAS  Google Scholar 

  3. Li JC, He Y, Inoue Y (2001) Polym J 33:336

    Article  CAS  Google Scholar 

  4. Nampoothiri KM, Nair NR, John R (2010) Bioresour Technol 101:8493

    Article  Google Scholar 

  5. Mooney BP (2009) Biochem J 418:219

    Article  CAS  Google Scholar 

  6. Nyambo C, Mohanty AK, Misra M (2010) Biomaromolecules 11:1654

    Article  CAS  Google Scholar 

  7. Auras R, Harte B, Selke S (2004) Macromol Biosci 4:835

    Article  CAS  Google Scholar 

  8. Koning C, van Duin M, Pagnoulle C, Jerome R (1998) Prog Polym Sci 23:707

    Article  CAS  Google Scholar 

  9. Ciemniecki SL, Glasser WG (1988) Polymer 29:1021

    Article  CAS  Google Scholar 

  10. Ciemniecki SL, Glasser WG (1988) Polymer 29:1030

    Article  CAS  Google Scholar 

  11. Li J, He Y, Inoue YS (2003) Polym Int 52:949

    Article  CAS  Google Scholar 

  12. Yokohara T, Yamaguchi M (2008) Eur Polym J 44:677

    Article  CAS  Google Scholar 

  13. Takagi Y, Yasuda R, Yamaoka M, Yamane T (2004) J Appl Polym Sci 93:2363

    Article  CAS  Google Scholar 

  14. Yeh JT, Tsou CH, Huang CY, Chen KN, Wu CS, Chai WL (2010) J Appl Polym Sci 116:680

    CAS  Google Scholar 

  15. Yuan H, Liu ZY, Ren J (2009) Poly Eng Sci 49:1004

    Article  CAS  Google Scholar 

  16. Liu XX, Khor S, Petinakis E, Yu L, Simon G, Dean K, Bateman S (2010) Thermochim Acta 509:147

    Article  CAS  Google Scholar 

  17. Mohamed AA, Gordon SH, Carriere CJ, Kim S (2006) J Food Qual 29:266

    Article  CAS  Google Scholar 

  18. Wang N, Yu JG, Ma XF (2007) Polym Int 56:1440

    Article  CAS  Google Scholar 

  19. Huneault MA, Li HB (2007) Polymer 48:270

    Article  CAS  Google Scholar 

  20. Wang N, Yu JG, Chang PR, Ma XF (2008) Carbohydr Polym 71:109

    Article  CAS  Google Scholar 

  21. Pradhan R, Misra M, Erickson L, Mohanty A (2010) Bioresour Technol 101:8489

    Article  CAS  Google Scholar 

  22. Finkenstadt VL, Tisserat B (2010) Ind Crops Prod 31:316

    Article  CAS  Google Scholar 

  23. Chen DK, Li J, Ren J (2010) Compos Part A–Appl S 41:101

    Article  Google Scholar 

  24. Chakraborty A, Sain M, Kortschot M, Cutler S (2007) J Biobased Mater Bioenergy 1:71

    Google Scholar 

  25. Zhang YC, Wu HY, Qiu YP (2010) Bioresource Technol 101:7944

    Article  CAS  Google Scholar 

  26. Xu J, Zhang JH, Gao WQ, Liang HW, Wang HY, Li JF (2009) Mater Lett 63:658

    Article  CAS  Google Scholar 

  27. Peesan M, Supaphol P, Rujiravanit R (2005) Carbohyd Polym 60:343

    Article  CAS  Google Scholar 

  28. Liao HT, Wu CS (2009) Mat Sci Eng A-Struct 515:207

    Article  Google Scholar 

  29. Ren J, Fu HY, Ren TB, Yuan WZ (2009) Carbohyd Polym 77:576

    Article  CAS  Google Scholar 

  30. Sarazin P, Li G, Orts WJ, Favis BD (2008) Polymer 49:599

    Article  CAS  Google Scholar 

  31. Liu X, Dever M, Fair N, Benson RS (1997) J Environ Polym Degr 5:225

    CAS  Google Scholar 

  32. Ke TY, Sun XZS (2003) J Polym Environ 11:7

    Article  CAS  Google Scholar 

  33. Kumar MNS, Mohanty AK, Erickson L, Misra M (2009) J Biobased Mater Bioenergy 3:1

    Article  CAS  Google Scholar 

  34. Corradini E, Pineda EAG, Hechenleitner AAW (1999) Polym Degrad Stabil 66:199

    Article  CAS  Google Scholar 

  35. Teramoto Y, Lee SH, Endo T (2009) Polym J 41:219

    Article  CAS  Google Scholar 

  36. Petinakis E, Liu XX, Yu L, Way C, Sangwan P, Dean K, Bateman S, Edward G (2010) Polym Degrad Stabil 95:1704

    Article  CAS  Google Scholar 

  37. Liu LF, Yu JY, Cheng LD, Qu WW (2009) Compos Part A-Appl S 40:669

    Article  Google Scholar 

  38. Cao X, Mohamed A, Gordon SH, Willett JL, Sessa DJ (2003) Thermochim Acta 406:115

    Article  CAS  Google Scholar 

  39. Finkenstadt VL, Liu LS, Willett JL (2007) J Polym Environ 15:1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of National Natural Science Foundation of China (Grant No. 50821062) was greatly appreciated. The authors would like to thank Prof. Yong Qiang in Nanjing University of Forest for his gift of the CEL sample, Prof. Mingcai Chen in Guangzhou Institute of Chemistry, CAS for the assistance in blending processing, and Dr. Linli Xu for her helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouyang, W., Huang, Y., Luo, H. et al. Poly(Lactic Acid) Blended with Cellulolytic Enzyme Lignin: Mechanical and Thermal Properties and Morphology Evaluation. J Polym Environ 20, 1–9 (2012). https://doi.org/10.1007/s10924-011-0359-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-011-0359-4

Keywords

Navigation