Skip to main content
Log in

Poly(Ethylene Glycol) as a Compatibilizer for Poly(Lactic Acid)/Thermoplastic Starch Blends

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

A new route to prepare poly(lactic acid) (PLA)/thermoplastic starch (TPS) blends is described in this work using poly(ethylene glycol) (PEG), a non-toxic polymer, as a compatibilizer. The influence of PEG on the morphology and properties of PLA/TPS blends was studied. The blends were processed using a twin-screw micro-compounder and a micro-injector. The morphologies were analyzed by scanning and transmission electron microscopies and the material properties were evaluated by dynamic-mechanical, differential scanning calorimetry, thermogravimetric analysis and mechanical tests. PLA/TPS blends presented large TPS phase size distribution and low adhesion between phases which was responsible for the lower elastic modulus of this blend when compared to pure PLA. The addition of PEG resulted in the increase of PLA crystallization, due to its plasticizing effect, and improvement of the interfacial interaction between TPS and PLA matrix. Results show that incorporation of PEG increased the impact strength of the ternary blend and that the elastic modulus remained similar to the PLA/TPS blend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yu L, Dean K, Li L (2006) Prog Polym Sci 31:576

    Article  CAS  Google Scholar 

  2. Williams CK, Hillmyer MA (2008) Polym Rev 48:1

    Article  CAS  Google Scholar 

  3. Gupta AP, Kumar V (2007) Eur Polym J 43:4053

    Article  CAS  Google Scholar 

  4. Drumright RE, Gruber PR, Henton DE (2000) Adv Mater 12:1841

    Article  CAS  Google Scholar 

  5. Li HB, Huneault MA (2007) Polymer 48:6855

    Article  CAS  Google Scholar 

  6. Wang N, Zhang XX, Han N, Fang J, Thermopl J (2010) Comp Mat 23:19

    CAS  Google Scholar 

  7. Wang N, Yu J, Chang PR, Ma X (2008) Carbohydr Polym 71:109

    Article  CAS  Google Scholar 

  8. Cai Q, Yang J, Bei J, Wang S (2002) Biomater 23:4483

    Article  CAS  Google Scholar 

  9. Huneault MA, Li H (2007) Polymer 48:270

    Article  CAS  Google Scholar 

  10. Park JW, Im SS (2000) Polym Eng Sci 40:2539

    Article  CAS  Google Scholar 

  11. Shirahase T, Komatsu Y, Marubayashi H, Tominaga Y, Asai S, Sumita M (2007) Polym Degrad Stab 92:1626

    Article  CAS  Google Scholar 

  12. Ren J, Fu H, Ren T, Yuan W (2009) Carbohydr Polym 77:576

    Article  CAS  Google Scholar 

  13. Na Y-H, He Y, Shuai X, Kikkawa Y, Doi Y, Inoue Y (2002) Biomacromol 3:1179

    Article  CAS  Google Scholar 

  14. Liao H-T, Wu C-H (2009) Mat Sci Eng A 515:207

    Article  Google Scholar 

  15. Petersson L, Oksman K (2006) Comp Sci Technol 66:2187

    Article  CAS  Google Scholar 

  16. Jacobsen S, Fritz HG (1996) Polym Eng Sci 36:2799

    Article  CAS  Google Scholar 

  17. Arroyo OH, Huneault MA, Favis BD, Bureau MN (2010) Polym Compos 31:114

    CAS  Google Scholar 

  18. DeLeo C, Pinotti CA, Gonçalves MC, Velankar S (2011) J Polym Environ 19:689

    Article  CAS  Google Scholar 

  19. Averous L, Halley PJ (2009) Biofpr 3:329

    CAS  Google Scholar 

  20. Smits ALM, Kruiskamp PH, Van Soest JJG, Vliegenthart JFG (2003) Carbohydr Polym 53:409

    Article  CAS  Google Scholar 

  21. Hulleman SHD, Janssen FHP, Feil H (1998) Polymer 39:2043

    Article  CAS  Google Scholar 

  22. Martin O, Averous L (2001) Polymer 42:6209

    Article  CAS  Google Scholar 

  23. Carvalho AJF, Curvelo AAS, Gandini A (2005) Ind Crops Prod 21:331

    Article  CAS  Google Scholar 

  24. Sheth M, Kumar RA, Davé V, Gross RA, McCarthy SP (1997) J Appl Polym Sci 66:1495

    Article  CAS  Google Scholar 

  25. Nature Works LLC Reports (2011) http://www.natureworksllc.com. Accessed 5 January 2011

  26. Luo WJ, Li SM, Bei JZ, Wang SG (2002) J Appl Polym Sci 84:1729

    Article  CAS  Google Scholar 

  27. Nijenhuis AJ, Colstee E, Grijpma DW, Pennings AJ (1996) Polymer 37:5849

    Article  CAS  Google Scholar 

  28. Pillin I, Montrelay N, Grohens Y (2006) Polymer 47:4676

    Article  CAS  Google Scholar 

  29. Pereira AGB, Gollveia RF, de Carvalho GM, Rubira AF, Muniz EC (2009) Mater Sci Eng, C 29:499

    Article  CAS  Google Scholar 

  30. Kim C-H, Kim D-W, Cho KY (2009) Polym Bull 63:91

    Article  CAS  Google Scholar 

  31. Lourdin D, Bizot H, Colonna P (1997) J Appl Polym Sci 63:1047

    Article  CAS  Google Scholar 

  32. Sarazin P, Li G, Orts WJ, Favis BD (2008) Polymer 49:599

    Article  CAS  Google Scholar 

  33. Craig DQM (1995) Themochim Acta 248:189

    Article  CAS  Google Scholar 

  34. Bogdanov B, Vidts A, Bulcke VD, Verbeeck R, Schacht E (1998) Polymer 39:1631

    Article  CAS  Google Scholar 

  35. Read BE (1962) Polymer 3:529

    Article  CAS  Google Scholar 

  36. Cassu SN, Felisberti MI (1997) Polymer 38:3907

    Article  CAS  Google Scholar 

  37. Cartier L, Okihara T, Ikada Y, Tsuji H, Puiggali J, Lotz B (2000) Polymer 41:8909

    Article  CAS  Google Scholar 

  38. Fischer EW, Sterzel HJ, Wegner G, Kolloid ZZ (1973) Polymer 25:980

    Google Scholar 

  39. Beaumont RH, Clegg B, Gee G, Herbert JBM, Marks DJ, Roberts RC, Sims D (1966) Polymer 7:401

    Article  CAS  Google Scholar 

  40. Schlemmer D, de Oliveira ER, Sales MJA, Thermal J (2007) Anal Calorim 87:635

    Article  CAS  Google Scholar 

  41. Yokesahachart C, Yoksan R (2011) Carbohydr Polym 83:22

    Article  CAS  Google Scholar 

  42. Shi QF, Chen C, Gao L, Jiao L, Xu H, Guo W (2011) Polym Degrad Stab 96:175

    Article  CAS  Google Scholar 

  43. McNeill IC, Leiper HA (1985) Polym Degrad Stab 11:309

    Article  CAS  Google Scholar 

  44. Zeng QH, Yu AB, Lu GQ, Paul DR (2005) J Nanosci Nanotechnol 5:1574

    Article  CAS  Google Scholar 

  45. Aggarwal P, Dollimore D, Heon K (1997) J Thermal Anal 50:7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (Brazil) through Inomat, National Institute (INCT) for Complex Functional Materials. The authors would also like to thank Cargill Dow and Copagra for material donation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria do Carmo Gonçalves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrarezi, M.M.F., de Oliveira Taipina, M., Escobar da Silva, L.C. et al. Poly(Ethylene Glycol) as a Compatibilizer for Poly(Lactic Acid)/Thermoplastic Starch Blends. J Polym Environ 21, 151–159 (2013). https://doi.org/10.1007/s10924-012-0480-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-012-0480-z

Keywords

Navigation