Skip to main content

Advertisement

Log in

Polylactide (PLA)—Halloysite Nanocomposites: Production, Morphology and Key-Properties

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

To evaluate the potential of halloysite nanotubes (HNT) as nanofiller for polylactide (PLA), various nanocomposites have been successfully produced by melt-blending the polyester matrix with HNT (HNT(QM)). HNT were also surface treated by silanization reaction with 3-(Trimethoxysilyl) propyl methacrylate (TMSPM). The morphology, thermal, tensile and impact strength properties of the nanocomposites containing 3–12 % HNT were evaluated and compared to those of pristine (unfilled) PLA. The nanocomposites were characterized by higher rigidity (with Young’s modulus increasing with HNT loading), higher tensile strength (about 70 MPa at 6 % HNT(QM)), whereas the elongation at break and impact strength did not decrease. As demonstrated under dynamic solicitation (DMA), melt-blending PLA with HNT led to enhancement of storage modulus (E′) and offers the possibility to use PLA in applications requiring higher temperatures of utilization. However, with few exceptions, TGA and DSC measurements did not reveal important changes of thermal parameters. The surface silanization treatment proved to improve the quality of the nanofiller dispersion even at higher loading. As a result, good thermal stability associated to high tensile strength, and noticeable increases in impact properties were recorded. Furthermore, enhanced nucleating ability and crystallization kinetics of the PLA matrix were revealed as specific characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Platt D (2006) Biodegradable polymers—market report. Smithers Rapra Limited UK, Shawbury

    Google Scholar 

  2. Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12(23):1841–1846

    Article  CAS  Google Scholar 

  3. Madhavan Nampoothiri K, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Biores Tech 101(22):8493–8501

    Article  CAS  Google Scholar 

  4. Dubois Ph, Murariu M (2008) The “green” challenge: high performance PLA (nano)composites. JEC Compos Mag 45:66–69

    Google Scholar 

  5. Vink ETH, Rábago KR, Glassner DA, Gruber PR (2003) Applications of life cycle assessment to NatureWorks™ polylactide (PLA) production. Polym Degrad Stabil 80(3):403–419

    Article  CAS  Google Scholar 

  6. Ravenstijn J (2010) The state-of-the-art on bioplastics products: markets, trends, and technologies. Polymedia Publisher GmbH

  7. Pluta M (2004) Morphology and properties of polylactide modified by thermal treatment, filling with layered silicates and plasticization. Polymer 45(24):8239–8251

    Article  CAS  Google Scholar 

  8. Solarski S, Ferreira M, Devaux E, Fontaine G, Bachelet P, Bourbigot S et al (2008) Designing of polylactide/clay nanocomposites for textile applications: effect of processing conditions, spinning and characterization. J Appl Polym Sci 109(2):841–851

    Article  CAS  Google Scholar 

  9. Murariu M, Da Silva Ferreira A, Degée Ph, Alexandre M, Dubois Ph (2007) Polylactide compositions. Part 1: effect of filler content and size on mechanical properties of PLA/calcium sulfate composites. Polymer 48(9):2613–2618

    Article  CAS  Google Scholar 

  10. Bleach NC, Nazhat SN, Tanner KE, Kellomäki M, Törmälä P (2002) Effect of filler content on mechanical and dynamic mechanical properties of particulate biphasic calcium phosphate-polylactide composites. Biomaterials 23(7):1579–1585

    Article  CAS  Google Scholar 

  11. Murariu M, Bonnaud L, Yoann P, Fontaine G, Bourbigot S, Dubois Ph (2010) New trends in polylactide (PLA)-based materials: “Green” PLA-calcium sulfate (nano)composites tailored with flame retardant properties. Polym Degrad Stabil 95(3):374–381

    Article  CAS  Google Scholar 

  12. Dubois Ph, Murariu M, Alexandre M, Degée Ph, Bourbigot S, Delobel R, Fontaine G, Devaux E (2008) Polylactide-based compositions. WO patent 095874 Al

  13. Murariu M, Da Silva Ferreira A, Duquesne E, Bonnaud L, Dubois Ph (2008) Polylactide (PLA) and highly filled PLA-calcium sulphate composites with improved impact properties. Macromol Symp 272(1):1–12

    Article  CAS  Google Scholar 

  14. Murariu M, Da Silva Ferreira A, Alexandre M, Dubois Ph (2008) Polylactide (PLA) designed with desired end-use properties: 1. PLA compositions with low molecular weight ester-like plasticizers and related performances. Polym Adv Technol 19(6):636–646

    Article  CAS  Google Scholar 

  15. Anderson KS, Schreck KM, Hillmyer MA (2008) Toughening polylactide. Polym Rev 48:85–108

    Article  CAS  Google Scholar 

  16. Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf 9(5):552–571

    Article  CAS  Google Scholar 

  17. Sinda Ray S, Yamada K, Okamoto M, Ogami A, Ueda K (2003) New polylactide/layered silicate nanocomposites 3 High-performance biodegradable materials. Chem Mater 15(7):1456–1465

    Article  Google Scholar 

  18. Fukushima K, Tabuani D, Camino G (2009) Nanocomposites of PLA and PCL based on montmorillonite and sepiolite. Mater Sci Eng C 29(4):1433–1441

    Article  CAS  Google Scholar 

  19. Villmow T, Potschke P, Pegel S, Haussler L, Kretzschmar B (2008) Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly(lactic acid) matrix. Polymer 49(16):3500–3509

    Article  CAS  Google Scholar 

  20. Bourbigot S, Fontaine G, Gallos A, Bellayer S (2011) Reactive extrusion of PLA and of PLA/carbon nanotubes nanocomposite: processing, characterization and flame retardancy. Polym Advan Technol 22(1):30–37

    Article  CAS  Google Scholar 

  21. Murariu M, Dechief AL, Bonnaud L, Paint Y, Gallos A, Fontaine G, Bourbigot S, Dubois Ph (2010) The production and properties of polylactide composites filled with expanded graphite. Polym Degrad Stabil 95(5):889–900

    Article  CAS  Google Scholar 

  22. Fukushima K, Murariu M, Camino G, Dubois Ph (2010) Effect of expanded graphite/layered-silicate clay on thermal, mechanical and fire retardant properties of poly(lactic acid). Polym Degrad Stabil 95(6):1063–1076

    Article  CAS  Google Scholar 

  23. Goffin AL, Duquesne E, Moins S, Alexandre M, Dubois Ph (2007) New organic–inorganic nanohybrids via ring opening polymerization of (di)lactones initiated by functionalized polyhedral oligomeric silsesquioxane. Eur Polym J 43(10):4103–4113

    Article  CAS  Google Scholar 

  24. Murariu M, Doumbia A, Bonnaud L, Dechief AL, Paint Y, Ferreira M, Campagne C, Devaux E, Dubois Ph (2011) High-performance polylactide/ZnO nanocomposites designed for films and fibers with special end-use properties. Biomacromolecules 12(5):1762–1771

    Article  CAS  Google Scholar 

  25. Du M, Guo B, Jia D (2010) Newly emerging applications of halloysite nanotubes: a review. Polym Int 59(5):574–582

    CAS  Google Scholar 

  26. Marney DCO, Russell LJ, Wu DY, Nguyen T, Cramm D, Rigopoulos N, Wright N, Greaves M (2008) The suitability of halloysite nanotubes as a fire retardant for nylon 6. Polym Degrad Stabil 93(10):1971–1978

    Article  CAS  Google Scholar 

  27. Prashantha K, Schmitt H, Lacrampe MF, Krawczak P (2011) Mechanical behaviour and essential work of fracture of halloysite nanotubes filled polyamide 6 nanocomposites. Compos Sci Technol 71(16):1859–1866

    Article  CAS  Google Scholar 

  28. Hedicke-Höchstötter K, Lim GT, Altstädt V (2009) Novel polyamide nanocomposites based on silicate nanotubes of the mineral halloysite. Compos Sci Technol 69(3–4):330–334

    Article  Google Scholar 

  29. Mingliang D, Baochun G, Demin J (2006) Thermal stability and flame retardant effects of halloysite nanotubes on poly(propylene). Eur Polym J 42(6):1362–1369

    Article  Google Scholar 

  30. Liu M, Guo B, Du M, Chen F, Jia D (2009) Halloysite nanotubes as a novel β-nucleating agent for isotactic polypropylene. Polymer 50(13):3022–3030

    Article  CAS  Google Scholar 

  31. Prashantha K, Lacrampe MF, Krawczak P (2011) Processing and characterization of halloysite nanotubes filled polypropylene nanocomposites based on a masterbatch route: effect of halloysites treatment on structural and mechanical properties. Express Polym Lett 5(4):295–307

    Article  CAS  Google Scholar 

  32. Zhao M, Liu P (2008) Halloysite nanotubes/Polystyrene (HNT/PS) nanocomposites via in situ bulk polymerization. J Therm Anal Calorim 94(1):103–107

    Article  CAS  Google Scholar 

  33. Liu M, Guo B, Du M, Cai X, Jia D (2007) Properties of halloysite nanotube-epoxy resin hybrids and the interfacial reactions in the systems. Nanotechnology 18(45):455703

    Article  Google Scholar 

  34. Deng S, Zhang J, Ye L (2009) Halloysite–epoxy nanocomposites with improved particle dispersion through ball mill homogenisation and chemical treatments. Compos Sci Technol 69(14):2497–2505

    Article  CAS  Google Scholar 

  35. Fleischer C, Daly R, Wagner A, Kelley D, Duffy M (September 17, 2008) Clay nanotubes in polymer composites: a route to stronger, lighter & less expensive materials. In: 8th annual SPE automotive composites conference & exhibition, Michigan

  36. Cooper S, Fleischer C, Michael D, Aaron W (2011) Polymeric composite including nanoparticle filler. United States Patent 2011/0160345 A1

  37. Cooper S, Fleischer C, Michael D, Aaron W (2011) Polymeric composite including nanoparticle filler, United States Patent 7,888,419 B2

  38. ***HNT™-QM, MSDS—material safety data sheet 0023, August 6, 2007

  39. Sadler EJ, Vecere AC (1995) Silane treatment of mineral fillers-practical aspects. Plast Rub Compos Pro 24(5):271–275

    CAS  Google Scholar 

  40. Cervantes-Uc JM, Cauich-Rodriguez JV, Vazquez-Torres H, Garfias-Mesias LF, Paul DR (2007) Thermal degradation of commercially available organoclays studied by TGA-FTIR. Thermochim Acta 457(1–2):92–102

    Article  CAS  Google Scholar 

  41. Quantin P, Herbillon AJ, Janot C, Siefferman G (1984) L’halloysite blanche riche en fer de vate (Vanuatu). Hypothese d’un edifice interstratifié halloysite-hisingerite. Clay Miner 19:629–643

    Article  CAS  Google Scholar 

  42. Yuan P, Southon PD, Liu Z, Green ME, Hook J, Antill SJ, Kepert CJ (2008) Functionalization of halloysite clay nanotubes by grafting with gamma-aminopropyltriethoxysilane. J Phys Chem C Nanomater Interfaces 112(40):15742–15751

    CAS  Google Scholar 

  43. ***Guide to Silane Solutions from Dow Corning. (Dow Corning Corporation, 2005) http://www.talleresnorte.com.ar/pdf/pinturas/silanos/silane_guide.pdf

  44. Lecouvet B, Gutierrez JG, Sclavons M, Bailly C (2011) Structure property relationships in polyamide 12/halloysite. Polym Degrad Stabil 96(2):226–235

    Article  CAS  Google Scholar 

  45. Yasuniwa M, Tsubakihara S, Sugimoto Y, Nakafuku C (2004) Thermal analysis of the double-melting behavior of poly(l-lactic acid). J Polym Sci Part B Polym Phys 42(1):25–32

    Article  CAS  Google Scholar 

  46. Su Z, Li Q, Liu Y, Hu G-H, Wu C (2009) Multiple melting behavior of poly(lactic acid) filled with modified carbon black. J Polym Sci Part B Polym Phys 47(20):1971–1980

    Article  CAS  Google Scholar 

  47. Pluta M, Murariu M, Alexandre M, Galeski A, Dubois P (2008) Polylactide compositions The influence of ageing on the structure, thermal and viscoelastic properties of PLA/calcium sulfate composites. Polym Degrad Stabil 93(5):925–931

    Article  CAS  Google Scholar 

  48. Handge UA, Hedicke-Höchstötter K, Altstädt V (2010) Composites of polyamide 6 and silicate nanotubes of the mineral halloysite: influence of molecular weight on thermal, mechanical and rheological properties. Polymer 51(12):2690–2699

    Article  CAS  Google Scholar 

  49. Deng S, Zhang J, Ye L, Wu J (2008) Toughening epoxies with halloysite nanotubes. Polymer 49(23):5119–5127

    Article  CAS  Google Scholar 

  50. Oyama HT (2009) Super-tough poly(lactic acid) materials: reactive blending with ethylene copolymer. Polymer 50(3):747–751

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank the Wallonia Region, Nord-Pas de Calais Region and European Community for the financial support in the frame of the IINTERREG IV—NANOLAC project. They thank all partners, especially to Professor Serge Bourbigot (ENSC Lille), Professor Eric Devaux (ENSAIT- Roubaix, France) and their collaborators, for helpful discussions and all mentioned companies for supplying raw materials. This work was also supported by the European Commission and Région Wallonne FEDER program (Materia Nova) and OPTI²MAT program of excellence, by the Interuniversity Attraction Pole program of the Belgian Federal Science Policy Office (PAI 6/27) and by FNRS-FRFC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marius Murariu or Philippe Dubois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murariu, M., Dechief, AL., Paint, Y. et al. Polylactide (PLA)—Halloysite Nanocomposites: Production, Morphology and Key-Properties. J Polym Environ 20, 932–943 (2012). https://doi.org/10.1007/s10924-012-0488-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-012-0488-4

Keywords

Navigation