Skip to main content
Log in

Biodegradation of Polylactide and Gelatinized Starch Blend Films Under Controlled Soil Burial Conditions

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The biodegradability of polylactide (PLA) and gelatinized starches (GS) blend films in the presence of compatibilizer was investigated under controlled soil burial conditions. Various contents (0–40 wt%) of corn and tapioca starches were added as fillers; whereas, different amounts of methylenediphenyl diisocyanate (MDI) (0–2.5 wt%) and 10 wt% based on PLA content of polyethylene glycol 400 (PEG400) were used as a compatibilizer and a plasticizer, respectively. The biodegradation process was followed by measuring changes in the physical appearance, weight loss, morphological studies, and tensile properties of the blend films. The results showed that the presence of small amount of MDI significantly increased the tensile properties of the blends compared with the uncompatibilized blends. This is attributed to an improvement of the interfacial interaction between PLA and GS phases, as evidenced by the morphological results. For soil burial testing, PLA/GS films with lower levels (1.25 wt%) of MDI had less degradation; in contrast, at high level of MDI, their changes of physical appearance and weight loss tended to increase. These effects are in agreement with their water absorption results. Furthermore, biodegradation rates of the films were enhanced with increasing starch contents, while mechanical performances were decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Martelli SM, Martelli EG, Martelli E (2009) J Therm Anal Calorim 97:853

    Article  CAS  Google Scholar 

  2. Ren J, Fu H, Ren T, Yuan W (2009) Carbohydr Polym 77:576

    Article  CAS  Google Scholar 

  3. Gu SY, Zhang K, Ren J, Zhan H (2008) Carbohydr Polym 74:79

    Article  CAS  Google Scholar 

  4. Fortunati E, Armentano I, Iannoni A, Kenny JM (2010) Polym Degrad Stab 95:2200

    Article  CAS  Google Scholar 

  5. Badia JD, Blasco LS, Moriana R, Greus AR (2010) Polym Degrad Stab 95:2192

    Article  CAS  Google Scholar 

  6. Liao HT, Wu CS (2009) Mat Sci Eng A-Struct 515:207

    Article  Google Scholar 

  7. Sarazin P, Li G, Orts WJ, Favis BD (2008) Polymer 49:599

    Article  CAS  Google Scholar 

  8. Martin O, Averous L (2001) Polymer 42:6209

    Article  CAS  Google Scholar 

  9. Drumright RE, Gruber PR, Henton DE (2000) Adv Mater 12:1841

    Article  CAS  Google Scholar 

  10. Huneault MA, Li H (2007) Polymer 48:270

    Article  CAS  Google Scholar 

  11. Li H, Huneault MA (2007) Polymer 48:6855

    Article  CAS  Google Scholar 

  12. Zhang JF, Sun X (2004) J Appl Polym Sci 94:1697

    Article  CAS  Google Scholar 

  13. Zhang JF, Sun XS (2004) Biomacromolecules 5:1446

    Article  CAS  Google Scholar 

  14. Hu Y, Hu YS, Hiltner A, Baer E (2003) Polymer 44:5711

    Article  CAS  Google Scholar 

  15. Ke T, Sun XS (2003) J Polym Environ 11:7

    Article  CAS  Google Scholar 

  16. Wang H, Sun X, Seib P (2002) J Polym Environ 10:133

    Article  CAS  Google Scholar 

  17. Dieteroch D, Grigat E, Hahn W (1985) Chemical and physical-chemical principles of polyurethane chemistry. In: Oertel G (ed) Polyurethane handbook. Hanser, New York

  18. Wang H, Sun X, Seib P (2001) J Appl Polym Sci 82:1761

    Article  CAS  Google Scholar 

  19. Wang H, Sun X, Seib P (2002) J Appl Polym Sci 84:1257

    Article  CAS  Google Scholar 

  20. Knutson CA, Grove MJ (1994) Cereal Chem 71:469

    Google Scholar 

  21. Rizzarellia P, Puglisia C, Montaudo G (2004) Polym Degrad Stab 85:855

    Article  Google Scholar 

  22. Schnabel W (1981) Polymer degradation, principles and practical applications. Hanser, Wien

    Google Scholar 

  23. Mitchell R, Mcnamara CJ (2010) Cultural heritage microbiology, fundamental studies in conservation science. ASM Press, Washington

    Google Scholar 

  24. Phetwarotai W, Potiyaraj P, Aht-Ong D (2010) J Appl Polym Sci 116:2305

    CAS  Google Scholar 

  25. Ratanakamnuan U, Aht-Ong D (2006) J Appl Polym Sci 100:2725

    Article  CAS  Google Scholar 

  26. Vert M, Feijen J, Albertsson A, Scott G, Chiellini E (1992) Biodegradable polymers and plastics. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  27. Fakirov S, Bhattacharyya D (2007) Handbook of engineering biopolymers, homopolymers, blends, and composites. Hanser, Munich

    Google Scholar 

  28. Ke T, Sun XZ, Seib P (2003) J Appl Polym Sci 89:3639

    Article  CAS  Google Scholar 

  29. Phetwarotai W, Potiyaraj P, Aht-Ong D (2012) J Appl Polym Sci 126:E162–E172

    Google Scholar 

Download references

Acknowledgments

The authors acknowledged the financial support from the National Research University Project of CHE and the Ratchadaphiseksomphot Endowment Fund (AM1027A) and the 90th Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund). W. Phetwarotai gratefully thanks Development and Promotion of Science and technology Talents project (DPST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duangdao Aht-Ong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phetwarotai, W., Potiyaraj, P. & Aht-Ong, D. Biodegradation of Polylactide and Gelatinized Starch Blend Films Under Controlled Soil Burial Conditions. J Polym Environ 21, 95–107 (2013). https://doi.org/10.1007/s10924-012-0530-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-012-0530-6

Keywords

Navigation