Skip to main content

Advertisement

Log in

Kinetics of Hydrolytic Degradation of PLA

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The chemical recycling of poly(lactic acid) (PLA) to its monomer is crucial to reduce both the consumption of renewable resources for the monomer synthesis and the environmental impact related to its production and disposal. In particular, the production of lactic acid from PLA wastes, rather than from virgin raw materials, it is also possible to achieve considerable primary energy savings. The focus of this work is to analyse deeply the PLA hydrolytic decomposition by means of a kinetic model based on two reactions mechanism. To this end, new experimental data have been gathered in order to investigate a wider temperature range (from 140 to 180 °C) and to extend the water/PLA ratio up to 50 % of PLA by weight. The reported results clearly highlight that more than 95 % of PLA is hydrolyzed to water-soluble lactic acid within 120 min, when it is hydrolyzed within 160–180 °C. Furthermore, the kinetic constant is highly influenced by reaction temperature. The proposed “two reactions” kinetic mechanism complies satisfactorily with the experimental data under analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fukushima K (2012) Chapter 7 in polylactic acid: synthesis, properties and applications. In: Piemonte V (ed). Nova Science, New York, ISBN: 978-1-62100-248-9

  2. Bastioli C (2005) Starch-based technology. In: Bastioli C (ed) Handbook of biodegradable polymers. Rapra Technology, Italy, pp 257–286

    Google Scholar 

  3. Hakkarainen M (2002) Aliphatic polyesters: abiotic and biotic degradation and degradation products. Adv Polym Sci 157:113

    Article  CAS  Google Scholar 

  4. Piemonte V, Gironi F (2011) Bioplastics and petroleum-based plastics: strengths and weaknesses. Energy Sources Part A Energy Recover Environ Effect 33:1949–1959

    Article  Google Scholar 

  5. Piemonte V, Gironi F (2012) Bioplastics and GHGs saving: the land use change (LUC) emissions issue. Energy Sources Part A Energy Recover Environ Effect 34(21):1995–2003

    Article  CAS  Google Scholar 

  6. Piemonte V, Gironi F (2011) Land use change emissions: how green are the bioplastics? Environ Prog Sustain Energy 30(4):685–691

    Article  CAS  Google Scholar 

  7. Piemonte V (2011) Bioplastic wastes: the best final disposition for energy saving. J Polym Environ 19:988–994

    Article  CAS  Google Scholar 

  8. Gironi F, Piemonte V (2011) Life cycle assessment of PET and PLA bottles for drinking water. Environ Prog Sustain Energy 30(3):459–468

    Article  CAS  Google Scholar 

  9. Kopinke FD, Remmler M, Mackenzie K, Milder M, Wachsen O (1996) Thermal decomposition of biodegradable polyesters-11. Poly(lactic acid). Polym Degrad Stab 143:329–342

    Article  Google Scholar 

  10. Noda M, Okuyama H (1999) Thermal catalytic depolymerization of poly(l-lactic acid) oligomer into ll-lactide: effects of Al, Ti, Zn and Zr compounds as catalysts. Chem Pharm Bull 47:467–471

    Article  CAS  Google Scholar 

  11. Tsuji H, Daimon H, Fujie K (2003) A new strategy for recycling and preparation of poly(l-lacticacid): hydrolysis in the melt. Biomacromolecules 4:835–840

    Article  CAS  Google Scholar 

  12. Matsumura M (2008) Enzymatic depolymerization process of polylactic acid and producing process of polylactic acid using depolymerization products. United States Patent 7396667

  13. Brake LD, Subramanian NS (1993) US Patent 5,229,5281993

  14. Coszach P, Bogaert JC, Willocq J Chemical recycling Of PLA by hydrolysis. WO patent 2010/118954 A1

  15. Coszach P, Bogaert JC, Willocq J Chemical recycling of PLA by alcoholysis. WO patent 2010/118955 A1

  16. Piemonte V, Gironi F (2012) Lactic acid production by hydrolysis of poly(l-lactic acid) in the solid state in aqueous solutions: an experimental and kinetic study. J Polym Environ. doi:10.1007/s10924-012-0468-8

    Google Scholar 

  17. Pitt C, Chasalow F, Hibionada Y, Klimas D, Schindler A (1981) Crucial differences in the hydrolytic degradation between industrial polylactide and laboratory-scale poly(l-lactide). J Appl PolymSci 26:3779–3787

    Article  CAS  Google Scholar 

  18. Pitt C, Shah S (1996) Manipulation of the rate of hydrolysis of polymer-drug conjugates: the secondary structure of the polymer. J Controlled Release 39:221–229

    Article  CAS  Google Scholar 

  19. Cha Y, Pitt C (1989) The acceleration of degradation-controlled drug delivery from polyester microspheres. J Controlled Release 8:259–265

    Article  CAS  Google Scholar 

  20. Li S, Garreau H, Vert M (1990) Structure-property relationships in the case of the degradation of massive aliphatic poly-(α-hydroxy acids) in aqueous media. J Mater Sci Mater Med 1:123–130

    Article  CAS  Google Scholar 

  21. Li S, Garreau H, Vert M, Li SM, Garreau H, Vert M (1990) Structure-property relationships in the case of the degradation of massive poly(a-hydroxy acids) in aqueous media. Part 2. Degradation of lactide–glycolide copolymers: PLA37.5GA25 and PLA75GA25. J Mater Sci MaterMed 1:131–139

    Article  CAS  Google Scholar 

  22. Li S, Garreau H, Vert M (1990) Structure-property relationships in the case of the degradation of massive poly(α-hydroxy acids) in aqueous media. J Mater Sci Mater Med 1:198–206

    Article  CAS  Google Scholar 

  23. Li S, McCarthy S (1999) Further investigations on the hydrolytic degradation of poly (dl-lactide). Biomaterials 20:35–44

    Article  CAS  Google Scholar 

  24. Gopferich A (1996) Mechanisms of polymer degradation and erosion. Biomaterials 17:103–114

    Article  CAS  Google Scholar 

  25. Vert M, Li S, Garreau H (1991) More about the degradation of LA/GA-derived matrices in aqueous media. J Controlled Release 16:15–26

    Article  CAS  Google Scholar 

  26. Therin M, Christel P, Li S, Garreau H, Vert M (1992) In vivo degradation of massive poly(alpha-hydroxy acids): validation of in vitro findings. Biomaterials 13:594–600

    Article  CAS  Google Scholar 

  27. Grizzi I, Garreau H, Li S, Vert M (1995) Hydrolytic degradation of devices based on poly (dl-lactic acid) size dependence. Biomaterials 16:305–311

    Article  CAS  Google Scholar 

  28. Gopferich A (1997) Polymer bulk erosion. Macromolecules 30:2598–2604

    Article  Google Scholar 

  29. Lyu S, Schley J, Loy B, Lind D, Hobot C, Sparer R, Untereker D (2007) Kinetics and time-temperature equivalence of polymer degradation. Biomacromolecules 8:2301–2310

    Article  CAS  Google Scholar 

  30. Viera A (2012) Chapter 8 in polylactic acid: synthesis, properties and applications. In: Piemonte V (ed). Nova Science, New York. ISBN: 978-1-62100-248-9

  31. Proikakis CS, Mamouzelos NJ, Tarantili PA, Andreopulos AG (2006) Swelling and hydrolytic degradation of poly(d,l-lactic acid) in aqueous solutions. Polym Degrad Stab 91:614–619

    Article  CAS  Google Scholar 

  32. Burkesroda F, Schedl L, Gopferich A (2002) Why degradable polymers undergo surface or bulk erosion. Biomaterials 23:4221–4231

    Article  Google Scholar 

  33. Tsuji H, Saeki T, Tsukegi T, Daimon H, Fujie K (2008) Comparative study on hydrolytic degradation and monomer recovery of poly(l-lactic acid) in the solid and in the melt. Polym Degrad Stab 93:1956–1963

    Article  CAS  Google Scholar 

  34. Cha Y, Pitt CG (1990) The biodegradability of polyester blends. Biomaterials 11:108–112

    Article  CAS  Google Scholar 

  35. Yagihashi M, Funazukuri T (2010) Ind Eng Chem Res 49(3):1247–1251

    Article  CAS  Google Scholar 

  36. Carrasco F, Pages P, Gamez-Perez J (2010) Polym Degrad Stab 95(12):2508–2514

    Article  CAS  Google Scholar 

  37. Henton DE, Gruber P, Lunt J, Randall J (2005) Polylactic acid tecnology. In: Mohanty K, Misra M, Drzal LT (eds) Natural fibers. CRC Press, Boca Raton

    Google Scholar 

  38. Gironi F, Piemonte V (2011) Temperature and solvent effects on polyphenols extraction process from chestnut tree wood. Chem Eng Res Des 89(7):857–862

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Sara Sabatini for his useful contribution and for the many days spent in the laboratory to collect experimental data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Piemonte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piemonte, V., Gironi, F. Kinetics of Hydrolytic Degradation of PLA. J Polym Environ 21, 313–318 (2013). https://doi.org/10.1007/s10924-012-0547-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-012-0547-x

Keywords

Navigation