Skip to main content
Log in

Exploring the Biodegradation Potential of Polyethylene Through a Simple Chemical Test Method

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Oxidatively degradable polyethylene is finding widespread use, particularly in applications such as single use packaging and agriculture. However, the key question which still remains unanswered is the ultimate fate and biodegradability of these polymers. During a short-time frame only the oxidized low molecular weight fraction will be amenable to significant biodegradation. The short-time frame biodegradation potential of different LDPE-transition metal formulations was, thus, explored through a simple chemical extraction of oxidized fraction. In addition the effectiveness of different transitions metals was evaluated by comparing the extractable fractions. Blown LDPE films modified with different transition metal based pro-oxidants were thermo-oxidized at 60 °C over extended periods. The structural changes occurring in the polymer were monitored and the oxidized degradation products formed as a result of the aging process were estimated by extractions with water and acetone. The extractable fraction first increased to approximately 22 % as a result of thermo-oxidative aging and then leveled off. The extractable fraction was approximately two times higher after acetone extraction compared to extraction with water and as expected, it was higher for the samples containing pro-oxidants. Based on our results in combination with existing literature we propose that acetone extractable fraction gives an estimation of the maximum short-term biodegradation potential of the material, while water extractable fraction indicates the part that is easily accessible to microorganisms and rapidly assimilated. The final level of biodegradation under real environmental conditions will of course be highly dependent on the specific environment, material history and degradation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Roy PK, Hakkarainen M, Varma IK, Albertsson A-C (2011) Environ Sci Technol 45:4217

    Article  CAS  Google Scholar 

  2. ASTM-D6954 (2004) Standard guide for exposing and testing plastics that degrade in the environment by a combination of oxidation and biodegradation

  3. ASTM-D6400 (2004) Standard specification for compostable plastics

  4. EN13432:2000 (2000) Packaging. Requirements for packaging recoverable through composting and biodegradation. Test scheme and evaluation criteria for the final acceptance of packaging

  5. ISO-17088 (2008) Specifications for compostable plastics

  6. Thomas N, Clarke J, McLauchlin A, Patrick S (2010) EV0422: assessing the environmental impacts of oxo-degradable plastics across their life cycle; Report for the Department for Environment, Food and Rural Affairs

  7. Hakkarainen M, Albertsson A-C (2004) Adv Polym Sci 169:177

    Article  CAS  Google Scholar 

  8. Scott G, Wiles DM (2006) Polym Degrad Stab 91:1581

    Article  Google Scholar 

  9. Ojeda TFM, Dalmolin E, Forte MMC, Jacques RJS, Bento FM, Camargo FAO (2009) Polym Degrad Stab 94:965

    Article  CAS  Google Scholar 

  10. Yabannavar AV, Bartha R (1994) Appl Environ Microbiol 60:3608

    CAS  Google Scholar 

  11. Fontanella S, Bonhomme S, Koutny M, Husarova L, Brusson JM, Courdavault JP, Pitteri S, Samuel G, Pichon G, Lemaire J, Delort A-M (2010) Polym Degrad Stab 95:1011

    Article  CAS  Google Scholar 

  12. Chiellini E, Corti A, Swift G (2003) Polym Degrad Stab 81:341

    Article  CAS  Google Scholar 

  13. Jakubowicz I (2003) Polym Degrad Stab 80:39

    Article  CAS  Google Scholar 

  14. Roy PK, Titus S, Surekha P, Tulsi E, Deshmukh C, Rajagopal C (2008) Polym Degrad Stab 93:1917

    Article  CAS  Google Scholar 

  15. Reddy MM, Deighton M, Gupta RK, Bhattacharya SN, Parthasarathy R (2009) J Appl Polym Sci 111:1426

    Article  CAS  Google Scholar 

  16. Albertsson A-C (1977) Studies on the mineralisation of 14C labelled polyethylenes in aerobic biodegradation and aqueous aging Stockholm. Royal Institute of Technology, Sweden

    Google Scholar 

  17. Potts JE (1978) Aspects of degradation and stabilization of polymers. Elsevier, New York

    Google Scholar 

  18. Potts JE, Clendinning RA, Ackart WB, Niegischi WD (1972) Polym Prepr 13:629

    Google Scholar 

  19. Haines JR, Alexander M (1974) Appl Microbiol 28:1084

    CAS  Google Scholar 

  20. Setti L, Pifferi PG, Lanzarini G (1995) J Chem Technol Biotechnol 64:41

    Article  CAS  Google Scholar 

  21. Boethling RS (1984) Environ Toxicol Chem 3:5

    Article  CAS  Google Scholar 

  22. Amin PM, Nigam JN, Lonsane BK, Baruah B, Singh HD (1973) Folia Biol 18:49

    CAS  Google Scholar 

  23. Baker KH, Herson DS (1994) Bioremediation. McGraw-Hill, New York

  24. Albertsson A-C (1978) J Appl Polym Sci 22:3419

    Article  CAS  Google Scholar 

  25. Albertsson A-C, Karlsson S (1990) Prog Polym Sci 15:177

    Article  CAS  Google Scholar 

  26. Koutny M, Lemaire J, Delort AM (2006) Chemosphere 64:1243

    Article  CAS  Google Scholar 

  27. Koutny M, Sancelme M, Dabin C, Pichon N, Delort AM, Lemaire J (2006) Polym Degrad Stab 91:1495

    Article  CAS  Google Scholar 

  28. Chiellini E, Corti A, D’Antone S (2007) Polym Degrad Stab 92:1378

    Article  CAS  Google Scholar 

  29. Narayan R (2010) BioPlastics Mag 5:38

    Google Scholar 

  30. Feuilloley P, Cesar G, Benguigui L, Grohens Y, Pillin I, Bewa H et al (2005) J Polym Environ 13:349

    Article  CAS  Google Scholar 

  31. Mohee R, Unmar GD, Mudhoo A, Khadoo P (2008) Waste Manage 28:1624

    Article  CAS  Google Scholar 

  32. Roy PK, Surekha P, Raman R, Rajagopal C (2009) Polym Degrad Stab 94:1033

    Article  CAS  Google Scholar 

  33. ASTM-D3895 (2007) Standard test method for oxidative-induction time of polyolefins by differential scanning calorimetry

  34. Sebaa M, Servens C, Pouyet J (1992) J Appl Polym Sci 45:1049

    Article  CAS  Google Scholar 

  35. Burman L, Albertsson A-C, Hakkarainen M, Adv M (2008) Polym Sci 211:1

    Article  CAS  Google Scholar 

  36. Karlsson S, Hakkarainen M, Albertsson A-C (1997) Macromolecules 30:7721

    Article  CAS  Google Scholar 

  37. Hakkarainen M, Albertsson A-C, Karlsson S (1997) J Environ Polym Degrad 5:67

    Article  CAS  Google Scholar 

  38. Hakkarainen M, Albertsson A-C, Karlsson S (1996) J Chromatogr A 741:251

    Article  CAS  Google Scholar 

  39. Albertsson A-C, Barenstedt C, Karlsson S (1994) Acta Polym 45:97

    Article  CAS  Google Scholar 

  40. Khabbaz F, Albertsson A-C, Karlsson S (1998) Polym Degrad Stab 61:329

    Article  CAS  Google Scholar 

  41. Khabbaz F, Albertsson A-C, Karlsson S (1999) Polym Degrad Stab 63:127

    Article  CAS  Google Scholar 

Download references

Acknowledgments

P.K. Roy is pleased to acknowledge Department of Science and Technology (DST), Government of India, New Delhi, for providing financial support through BOYSCAST program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann-Christine Albertsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, P.K., Hakkarainen, M. & Albertsson, AC. Exploring the Biodegradation Potential of Polyethylene Through a Simple Chemical Test Method. J Polym Environ 22, 69–77 (2014). https://doi.org/10.1007/s10924-013-0629-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-013-0629-4

Keywords

Navigation