Skip to main content
Log in

Biodegradable Poly(butylene succinate) and Poly(butylene adipate-co-terephthalate) Blends: Reactive Extrusion and Performance Evaluation

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Two biodegradable polyesters, poly(butylene adipate-co-terephthalate) (PBAT) and poly(butylene succinate) (PBS) were melt-compounded in a twin screw extruder to fabricate a novel PBS/PBAT blend. The compatibility of the blend was attributed to the transesterification reaction that was confirmed by Fourier transform infrared spectroscopy. The Gibbs free energy equation was applied to explain the miscibility of the resulting blend. Dynamic mechanical analysis of the blends exhibits an intermediate tanδ peak compared to the individual components which suggests that the blend achieved compatibility. One of the key findings is that the tensile strength of the optimized blend is higher than each of the blended partner. Rheological properties revealed a strong shear-thinning tendency of the blend by the addition of PBAT into PBS. The phase morphology of the blends was observed through scanning electron microscopy, which revealed that phase separation occurred in the blends. The spherulite growth in the blends was highly influenced by the crystallization temperature and composition. In addition, the presence of a dispersed amorphous phase was found to be a hindrance to the spherulite growth, which was confirmed by polarizing optical microscopy. Furthermore, the increased crystallization ability of PBAT in the blend systems gives the blend a balanced thermal resistance property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Wu D, Yuan L, Laredo E, Zhang M, Zhou W (2012) Ind Eng Chem Res 51:2290–2298

    Article  CAS  Google Scholar 

  2. Tokiwa Y, Calabia BP (2007) J Polym Environ 15:259–267

    Article  CAS  Google Scholar 

  3. Zhang K, Mohanty AK, Misra M (2012) ACS Appl Mater Interfaces 4:3091–3101

    Article  CAS  Google Scholar 

  4. Ouyang W, Huang Y, Luo H, Wang D (2012) J Polym Environ 20:1–9

    Article  CAS  Google Scholar 

  5. Yu T, Luo F, Zhao Y, Wang D, Wang F (2011) J Appl Polym Sci 120:692–700

    Article  CAS  Google Scholar 

  6. John J, Mani R, Bhattacharya M (2002) J Polym Sci A Polym Chem 40:2003–2014

    Article  CAS  Google Scholar 

  7. Nanda MR, Misra M, Mohanty AK (2011) Macromol Mater Eng 296:719–728

    Article  CAS  Google Scholar 

  8. Huang P, Zhong Z, Zheng S, Zhu W, Guo Q (1999) J Appl Polym Sci 73:639–647

    Article  CAS  Google Scholar 

  9. Varughese KT, Nando GB, De PP, De SK (1988) J Mater Sci 23:3894–3902

    Article  CAS  Google Scholar 

  10. Nesarikar AR, Carr SH, Khait K, Mirabella FM (1997) J Appl Polym Sci 63:1179–1187

    Article  CAS  Google Scholar 

  11. Singh D, Malhotra VP, Vats JL (1999) J Appl Polym Sci 71:1959–1968

    Article  CAS  Google Scholar 

  12. Tang W, Murthy NS, Mares F, McDonnell ME, Curran SA (1999) J Appl Polym Sci 74:1858–1867

    Article  CAS  Google Scholar 

  13. Kotliar AM (1981) J Polym Sci Macromol Rev 16:367–395

    Article  CAS  Google Scholar 

  14. Jayakannan M, Anilkumar P (2004) J Polym Sci A Polym Chem 42:3996–4008

    Article  CAS  Google Scholar 

  15. Chen HL (1995) Macromolecules 28:2845–2851

    Article  CAS  Google Scholar 

  16. Aravind I, Ahn KH, Ranganathaiah C, Thomas S (2009) Ind Eng Chem Res 48:9942–9951

    Article  CAS  Google Scholar 

  17. Focarete ML, Scandola M, Dobrzynski P, Kowalczuk M (2002) Macromolecules 35:8472–8477

    Article  Google Scholar 

  18. Aravind I, Eichhorn KJ, Komber H, Jehnichen D, Zafeiropoulos NE, Ahn KH, Grohens Y, Stamm M, Thomas S (2009) J Phys Chem B 113:1569–1578

    Article  CAS  Google Scholar 

  19. Liu B, Bhaladhare S, Zhan P, Jiang L, Zhang J, Liu L, Hotchkiss AT (2011) Ind Eng Chem Res 50:13859–13865

    Article  CAS  Google Scholar 

  20. Fujimaki T (1998) Polym Degrad Stab 59:209–214

    Article  CAS  Google Scholar 

  21. Soccio M, Lotti N, Gigli M, Finelli L, Gazzano M, Munari A (2012) Polym Int 61:1163–1169

    Article  CAS  Google Scholar 

  22. Huang CL, Jiao L, Zhang JJ, Zeng JB, Yang KK, Wang YZ (2012) Polym Chem 3:800–808

    Article  CAS  Google Scholar 

  23. Kim SW, Lim JC, Kim DJ, Seo KH (2004) J Appl Polym Sci 92:3266–3274

    Article  CAS  Google Scholar 

  24. Myriant Technologies websites. http://www.myriant.com/succinicpage.htm. Accessed on Febraury 2013

  25. Yoo ES, Im SS (1999) J Polym Sci B Polym Phys 37:1357–1366

    Article  CAS  Google Scholar 

  26. Wang J, Zheng L, Li C, Zhu W, Zhang D, Xiao Y, Guan G (2012) Polym Test 31:39–45

    Article  Google Scholar 

  27. Qiu Z, Ikehara T, Nishi T (2003) Polymer 44:2503–2508

    Article  CAS  Google Scholar 

  28. Kim YJ, Park OO (1999) J Polym Environ 7:53–66

    Article  CAS  Google Scholar 

  29. Gu SY, Zhang K, Ren J, Zhan H (2008) Carbohydr Polym 74:79–85

    Article  CAS  Google Scholar 

  30. Gan Z, Abe H, Kurokawa H, Doi Y (2001) Biomacromolecules 2:605–6013

    Article  CAS  Google Scholar 

  31. Sykacek E, Hrabalova M, Frech H, Mundigler N (2009) Compos Part A Appl Sci Manuf 40:1272–1282

    Article  Google Scholar 

  32. Javadi A, Kramschuster AJ, Pilla S, Lee J, Gong S, Turng LS (2010) Polym Eng Sci 50:1440–1448

    Article  CAS  Google Scholar 

  33. Jiang L, Liu B, Zhang J (2009) Ind Eng Chem Res 48:7594–7602

    Article  CAS  Google Scholar 

  34. Jang MO, Kim SB, Nam B-U (2012) Polym Bull 68:287–298

    Article  CAS  Google Scholar 

  35. Javadi A, Srithep Y, Lee J, Pilla S, Clemons C, Gong S, Turng LS (2010) Compos Part A Appl Sci Manuf 41:982–990

    Article  Google Scholar 

  36. Qiu Z, Ikehara T, Nishi T (2003) Polymer 44:3095–3099

    Article  CAS  Google Scholar 

  37. Li Y, Shimizu H (2009) ACS Appl Mater Interfaces 1:1650–1655

    Article  CAS  Google Scholar 

  38. Huang X, Li C, Zheng L, Zhang D, Guan G, Xiao Y (2009) Polym Int 58:893–899

    Article  CAS  Google Scholar 

  39. Kwei TK (1984) J Polym Sci B 22:307–313

    CAS  Google Scholar 

  40. Wang LH, Huang Z, Hong T, Porter RS (1990) J Macromol Sci Phys B 29:155–169

    Article  Google Scholar 

  41. Takiyama E, Fujimaki T, Seki S, Hokari T, Hatano Y (1994) US patent no. 5310782

  42. Takiyama E, Hatano Y, Fujimaki T, Seki S, Hokari T, Hosogane T, Harigai N (1995) US patent no. 5436056

  43. Mittal V (2012) Functional polymer blends: synthesis, properties, and performance. CRC Press, New York, p 235

    Google Scholar 

  44. Joseph K, Thomas S, Pavithran C (1996) Polymer 37:5139–5149

    Article  CAS  Google Scholar 

  45. Dobkowski Z (1986) Rheol Acta 25:195–198

    Article  CAS  Google Scholar 

  46. Carrasco F, Pagès P, Gámez-Pérez J, Santana O-O, Maspoch ML (2010) Polym Degrad Stab 95:116–125

    Article  CAS  Google Scholar 

  47. Corre YM, Bruzaud S, Audic JL, Grohens Y (2012) Polym Test 31:226–235

    Article  CAS  Google Scholar 

  48. Siciliano A, Seves A, Maro TD, Cimmino S, Martuscelli E, Silvestre C (1995) Macromolecules 28:8065–8072

    Article  CAS  Google Scholar 

  49. Liu AS, Liau WB, Chiu WY (1998) Macromolecules 31:6593–6599

    Article  CAS  Google Scholar 

  50. Richards E, Rizvi R, Chow A, Naguib H (2008) J Polym Environ 16:258–266

    Article  CAS  Google Scholar 

  51. Parulekar Y, Mohanty AK (2007) Macromol Mater Eng 292:1218–1228

    Article  CAS  Google Scholar 

  52. Mark JE (2006) Physical properties of polymers handbook, 2nd edn. Spring Science, New york 293

    Google Scholar 

  53. Jain S, Redy MM, Mohanty AK, Misra M, Ghosh AK (2010) Macromol Mater Eng 295:750–762

    Article  CAS  Google Scholar 

  54. Menard KP (1999) Dynamic mechanical analysis: a practical introduction, 2nd edn. CRC Press, New York, p 85

    Book  Google Scholar 

  55. Mohanty S, Nayak SK (2012) J Polym Environ 20:195–207

    Article  CAS  Google Scholar 

  56. Aravind I, Boumod A, Grohens Y, Thomas S (2010) Ind Eng Chem Res 49:3873–3882

    Article  CAS  Google Scholar 

  57. Thomas S, Gupta BR, De SK (1987) J Vinyl Technol 9:71–85

    Article  CAS  Google Scholar 

  58. ASTM Standard D648 (2007) Standard test method for deflection temperature of plastics under flexural load in edgewise position. ASTM International, West Conshohocken, PA. www.astm.org.

  59. Kawamoto N, Saki A, Horikoshi T, Urushihara T, Tobita E (2007) J Appl Polym Sci 103:244–250

    Article  CAS  Google Scholar 

  60. Lu SF, Chen M, Chen CH (2012) J Appl Polym Sci 123:3610–3619

    Article  CAS  Google Scholar 

  61. Chrissafis K, Paraskevopoulos KM, Bikiaris DN (2005) Thermochim Acta 435:142–150

    Article  CAS  Google Scholar 

  62. Di Y, Iannace S, Maio ED, Nicolais L (2005) Macromol Mater Eng 290:1083–1090

    Article  CAS  Google Scholar 

  63. Bhatia A, Gupta RK, Bhattacharya SN, Choi HJ (2007) Korea Aust Rheol J 19:125–131

    Google Scholar 

  64. Li K, Peng J, Turng LS, Huang HX (2011) Adv Polym Technol 30:150–157

    Article  CAS  Google Scholar 

  65. Wang L, Jing X, Cheng H, Hu X, Yang L, Huang Y (2012) Ind Eng Chem Res 51:10088–10099

    Article  CAS  Google Scholar 

  66. Wang T, Li H, Wang F, Schultz JM, Yan S (2011) Polym Chem 2:1688

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Ontario Ministry of Agriculture and Food (OMAF) and Ministry of Rural Affairs (MRA)—University of Guelph Bioeconomy-industrial uses research, for their sponsorships. They also gratefully acknowledge the Ontario Research Fund, Research Excellence, round-4 (ORF RE04) from Ontario Ministry of Economic Development and Innovation (MEDI), Natural Sciences and Engineering Research Council (NSERC), Networks of Centers of Excellence (NCE) and AUTO21 project for their financial support to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manjusri Misra or Amar Kumar Mohanty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muthuraj, R., Misra, M. & Mohanty, A.K. Biodegradable Poly(butylene succinate) and Poly(butylene adipate-co-terephthalate) Blends: Reactive Extrusion and Performance Evaluation. J Polym Environ 22, 336–349 (2014). https://doi.org/10.1007/s10924-013-0636-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-013-0636-5

Keywords

Navigation