Skip to main content
Log in

The Properties of PLA/Oxidized Soybean Oil Polymer Blends

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Novel polymer blends based on completely renewable polymers were reported. Polymer blends based on polylactic acid (PLA) and oxidized and hydroxylated soya bean oil polymers were prepared. Plasticization and mechanical strength effect of the soya bean oil polymers on the PLA were observed. Fracture surface analysis of the polymer blends was carried out by using scanning electron microscopy. The PLA blends showed more amorphous morphologies compared to pure PLA. The blends had better elongation at break in view of the stress–strain measurement. Blend of PLA with the hydroxylated polymeric soya bean oil indicated the slightly antibacterial properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Albertsson AC, Varma IK (2003) Biomacromolecules 4:1466

    Article  CAS  Google Scholar 

  2. Kaplan DL (1998) Biopolymers from Renewable Resources. Springer Verlag, New York

    Book  Google Scholar 

  3. Li SM, Garreau H, Vert M (1990) J Mater Sci Mater Med 1:123

    Article  CAS  Google Scholar 

  4. Vert M, Schwarch G, Coudane J (1995) J Macromol Sci Pure Appl Chem A32:787

    Article  CAS  Google Scholar 

  5. Thi TH, Matsusaki M, Akashi M (2009) Biomacromolecules 10:766

    Article  CAS  Google Scholar 

  6. Williams CK, Hillmyer MA (2008) Polym Rev 48:1

    Article  CAS  Google Scholar 

  7. Cheng M, Attygalle AB, Lobkovsky EB, Coates GW (1999) J Am Chem Soc 121:11583

    Article  CAS  Google Scholar 

  8. Anderson KS, Schreck KM, Hillmyer MA (2008) Polym Rev 48:85

    Article  CAS  Google Scholar 

  9. Sheth M, Kumar RA, Dave V, Gross RA, McCarthy SP (1997) J Appl Polym Sci 66:1495

    Article  CAS  Google Scholar 

  10. Hu Y, Hu YS, Topolkaraev V, Hiltner A, Baer E (2003) Polymer 44:5711

    Article  CAS  Google Scholar 

  11. Yoon J-S, Lee W-S, Kim K-S, Chin I-J, Kim M-N, Kim C (2000) Eur Polym J 36:435

    Article  CAS  Google Scholar 

  12. Zhang L, Xiong C, Deng X (1996) Polymer 37:235

    Article  CAS  Google Scholar 

  13. Anderson KS, Hillmyer MA (2004) Polymer 45:8809

    Article  CAS  Google Scholar 

  14. Tingaut P, Zimmermann T, Lopez-Suevos F (2010) Biomacromolecules 11:454

    Article  CAS  Google Scholar 

  15. Bhardwaj R, Mohanty AK (2007) Biomacromolecules 8:2476

    Article  CAS  Google Scholar 

  16. Chang K, Robertson ML, Hillmyer MA (2009) Appl Mater Interfaces 1:2390

    Article  CAS  Google Scholar 

  17. Zalusky AS, Olayo-Valles R, Wolf JH, Hillmyer MA (2002) J Am Chem Soc 124:12761

    Article  CAS  Google Scholar 

  18. Buchmeiser MR (2001) Angew Chem Int Ed 40:3795

    Article  CAS  Google Scholar 

  19. Taşkın E, Hazer B, Beşirli N, Çavuş G (2012) J Macromol Sci Part A Pure Appl Chem 49:164

    Article  Google Scholar 

  20. Hazer B, Baysal BM, Köseoğlu AG, Beşirli N, Taşkın E (2012) J Polym Environ 20:477

    Article  CAS  Google Scholar 

  21. Wootthikanokkhan J, Kasemwananimit P, Sombatsompop N, Kositchaiyong A, Ayutthaya SI, Kaabbuathong N (2012) J Appl Polym Sci 126:E389

    Article  Google Scholar 

  22. Chow WS, Tham WL, Seow PC (2013) J Thermoplast Compos Mater 26:1349

    Article  Google Scholar 

  23. Dorresteijn R, Ragg R, Rago G, Billecke N, Bonn M, Parekh SH, Battagliarin G, Peneva K, Wagner M, Klapper M, Müllen K (2013) Biomacromolecules 14:1572

    Article  CAS  Google Scholar 

  24. Broström J, Boss A, Chronakis IS (2004) Biomacromolecules 5:1124

    Article  Google Scholar 

  25. Gramlich WM, Robertson ML, Hillmyer MA (2010) Macromolecules 43:2313

    Article  CAS  Google Scholar 

  26. Larock RC, Dong X, Chung S, Reddy CK, Ehlers LE (2001) J Am Oil Chem Soc 78:447

    Article  CAS  Google Scholar 

  27. Çakmakli B, Hazer B, Tekin İÖ, Cömert FB (2005) Biomacromolecules 6:1750

    Article  Google Scholar 

  28. Allı A, Hazer B (2008) Eur Polym J 44:1701

    Article  Google Scholar 

  29. Keleş E, Hazer B (2009) J Polym Environ 17:153

    Article  Google Scholar 

  30. Hazer B, Hazer DB, Çoban B (2010) J Polym Res 17:567

    Article  CAS  Google Scholar 

  31. Allı A, Hazer B (2011) J Am Oil Chem Soc 88:255

    Article  Google Scholar 

  32. Acar M, Çoban S, Hazer B (2013) J Macromol Sci Part A Pure Appl Chem 50:287

    Article  CAS  Google Scholar 

  33. Keleş E, Hazer B, Cömert FB (2013) Mater Sci Eng C 33:1061

    Article  Google Scholar 

  34. Kolb HC, Finn MG, Sharpless KB (2001) Angew Chem Int Ed 40:2004

    Article  CAS  Google Scholar 

  35. Wang H, Composto RJ (2003) Interface Sci 11:237

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by; both the Bülent Ecevit University Research Fund (#BEU-2012-10-03-13) and TUBITAK (Grant # 211T016). The Author thanks to Cem Berk for taking SEM micrographs, thanks to Özcan Cura (Cilas Kauçuk-Devrek), Ceyda Pembeci Kodolbaş (TÜBİTAK-MAM) for antibacterial analysis, Elvan Sulu and Timur Şanal for molecular weight measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baki Hazer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hazer, B. The Properties of PLA/Oxidized Soybean Oil Polymer Blends. J Polym Environ 22, 200–208 (2014). https://doi.org/10.1007/s10924-014-0645-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-014-0645-z

Keywords

Navigation