Skip to main content
Log in

Biobased Ternary Blends of Lignin, Poly(Lactic Acid), and Poly(Butylene Adipate-co-Terephthalate): The Effect of Lignin Heterogeneity on Blend Morphology and Compatibility

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Blending of lignin into thermoplastic materials presents a challenge due to the lack of dispersion and compatibility in the thermoplastic matrices. Kraft lignin was fractionated by methanol to homogenize its structure and molecular weight, and blended with poly(butylene adipate-co-terephthalate) (PBAT) and poly(lactic acid) (PLA). It was found through Fourier transform infrared spectroscopy that the lignin–polyester interaction involves aromatic group interactions as well as hydrogen bonding between the polymers. The differences in the intermolecular interactions led to high compatibility of lignin with PBAT and low compatibility with PLA as reflected by glass transition temperature shifts on the differential scanning calorimetry (DSC) curves. The DSC study also indicated that the methanol soluble lignin (MSL) fraction interacts with both PLA and PBAT, but no sign of interaction was evident between PLA and PBAT, which is reflected in the scanning electron microscope images depicting the morphology of the ternary blend. The resulting tensile properties showed retention of toughness at 30 % lignin content, and bridging of stress between PLA and PBAT by MSL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Satheesh Kumar MN, Mohanty AK, Erickson L, Misra M (2009) J Biobased Mater Bioenergy 3:1

    Article  Google Scholar 

  2. Doherty WOS, Mousavioun P, Fellows CM (2011) Ind Crops Prod 33:259

    Article  CAS  Google Scholar 

  3. Pouteau C, Dole P, Cathala B, Averous L, Boquillon N (2003) Polym Degrad Stab 81:9

    Article  CAS  Google Scholar 

  4. Yoshida H, Morck R, Kringstad Knut P, Hatakeyama H (1987) Holzforschung—Int J Biol Chem Phys Technol Wood 41:171

  5. Morck R, Reimann A, Kringstad Knut P (1988) Holzforschung—Int J Biol Chem Phys Technol Wood 42:111

  6. Glasser WG, Sarkanen S (1989) In: Symposium at the 195th national meeting of the American chemical society, Toronto, Ontario, Canada, June 5–11, American Chemical Society, pp 545

  7. de Oliveira W, Glasser WG (1994) Macromolecules 27:5

    Article  Google Scholar 

  8. Thring RW, Griffin SL (1995) Can J Chem 73:629

    Article  CAS  Google Scholar 

  9. Thring RW, Vanderlaan MN, Griffin SL (1999) J Wood Chem Technol 16:139

    Article  Google Scholar 

  10. Ghosh I, Jain Rajesh K, Glasser Wolfgang G (1999) Lignin: historical, biological, and materials perspectives. American Chemical Society, Washington, DC, pp 331

  11. Sun R, Tomkinson J, Griffiths S (2000) Int J Polym Anal Charact 5:531

    Article  CAS  Google Scholar 

  12. Pucciariello R, Villani V, Bonini C, D’Auria M, Vetere T (2004) Polymer 45:4159

    Article  CAS  Google Scholar 

  13. Leger CA, Chan FD, Schneider MH (2010) Bioresources 5:2239

    CAS  Google Scholar 

  14. Yue X, Chen F, Zhou X (2012) J Macromol Sci Phys 51:242

    Article  CAS  Google Scholar 

  15. Yue X, Chen F, Zhou X, He G (2012) Int J Polym Mater 61:214

    Article  CAS  Google Scholar 

  16. Tunc MS, Chheda J, van der Heide E, Morris J, van Heiningen A (2014) Holzforschung 68:401

    Article  CAS  Google Scholar 

  17. Cui CZ, Sun RK, Argyropoulos DS (2014) ACS Sustain Chem Eng 2:959

    Article  CAS  Google Scholar 

  18. Morck R, Yoshida H, Kringstad KP, Hatakeyama H (1986) Holzforschung 40:51

    Article  Google Scholar 

  19. Mousavioun P, Doherty WOS, George G (2010) Ind Crops Prod 32:656

    Article  CAS  Google Scholar 

  20. Li J, He Y, Inoue Y (2003) Polym Int 52:949

    Article  CAS  Google Scholar 

  21. Li J, He Y, Inoue Y (2001) Polym J 33:336

    Article  CAS  Google Scholar 

  22. Sahoo S, Misra M, Mohanty AK (2011) Compos A 42:1710

    Article  Google Scholar 

  23. Kubo S, Kadla JF (2005) J Appl Polym Sci 98:1437

    Article  CAS  Google Scholar 

  24. Pouteau C, Baumberger S, Cathala B, Dole P (2004) C R Biol 327:935

    Article  CAS  Google Scholar 

  25. Nitz H, Semke H, Mulhaupt R (2001) Macromol Mater Eng 286:737

    Article  CAS  Google Scholar 

  26. Kubo S, Kadla JF (2005) J Polym Environ 13:97

    Article  CAS  Google Scholar 

  27. Kadla JF, Kubo S (2004) Compos A 35:395

    Article  Google Scholar 

  28. Kubo S, Kadla JF (2005) Biomacromolecules 6:2815

    Article  CAS  Google Scholar 

  29. Auras R, Loong-Tak L, Selke SEM, Tsuji H (2010) Poly(lactic acid). Synthesis, structures, properties, processing, and applications. Wiley, NY

    Book  Google Scholar 

  30. Jiang L, Wolcott MP, Zhang JW (2006) Biomacromolecules 7:199

    Article  Google Scholar 

  31. Yeh J-T, Tsou C-H, Huang C-Y, Chen K-N, Wu C-S, Chai WL (2010) J Appl Polym Sci 116:680

    CAS  Google Scholar 

  32. Barlow JW, Paul DR (1981) Annu Rev Mater Sci 11:299

    Article  CAS  Google Scholar 

  33. Hunter CA, Sanders JKM (1990) J Am Chem Soc 112:5525

    Article  CAS  Google Scholar 

  34. Lee S, Lee Y, Lee JW (2007) Macromol Res 15:44

    Article  CAS  Google Scholar 

  35. Zhang N, Wang Q, Ren J, Wang L (2009) J Mater Sci 44:250

    Article  CAS  Google Scholar 

  36. Utracki LA (1991) J Rheol 35:1615

    Article  CAS  Google Scholar 

  37. Chivrac F, Kadlecova Z, Pollet E, Averous L (2006) J Polym Environ 14:393

    Article  CAS  Google Scholar 

  38. Nyambo C, Mohanty AK, Misra M (2010) Biomacromolecules 11:1654

    Article  CAS  Google Scholar 

  39. Ouyang W, Huang Y, Luo H, Wang D (2012) J Polym Environ 20:1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from the Natural Sciences and Engineering Research Council (NSERC), Canada Lignoworks Network to carry out this research is gratefully acknowledged. Authors also acknowledge MeadWestvaco for providing the lignin samples for this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manjusri Misra or Amar K. Mohanty.

Additional information

Mohamed A. Abdelwahab was on leave from Department of Chemistry, Tanta University, Tanta, 31527, Egypt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Abdelwahab, M.A., Misra, M. et al. Biobased Ternary Blends of Lignin, Poly(Lactic Acid), and Poly(Butylene Adipate-co-Terephthalate): The Effect of Lignin Heterogeneity on Blend Morphology and Compatibility. J Polym Environ 22, 439–448 (2014). https://doi.org/10.1007/s10924-014-0704-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-014-0704-5

Keywords

Navigation