Skip to main content
Log in

Structure and Thermal Properties of Polyurethanes Synthesized from Cardanol Diol

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Amorphous polyurethanes (PUs) were prepared from isophorone diisocyanate and various diols based on ethylene glycol, containing phenol (PD), hydrogenated cardanol (HCD) and cardanol (CD) as side groups. The influence of side groups on thermal and thermo-oxidative stability was studied by thermogravimetric analysis and differential scanning calorimetry. The finding revealed that pendent C15 alkyl side groups of HCD–PU and CD–PU improved thermal stability of PUs. The possible crosslinks of olefinic side groups enhanced both thermal and thermo-oxidative stability of CD–PU. Both EG–PU and CD–PU exhibited good oxidative resistance. The glass transition temperature arranged in the order of EG–PU > PD–PU > HCD–PU > CD–PU. Cardanol molecules on PU backbones acted as an internal plasticizer and elevated the flexibility of PUs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 6

Similar content being viewed by others

References

  1. Woods G (1987) The ICI polyurethanes book. Wiley, Chicester

    Google Scholar 

  2. Krol P (2007) Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Prog Mater Sci 52:915

    Article  CAS  Google Scholar 

  3. Woebcken W (1995) Saechtling internation plastics handbook for the technologist, engineer. In: Haim J, Hyatt D (eds). Hanser, New York

  4. Gandini A (2008) Polymers from renewable resources: a challenge for the future of macromolecular materials. Macromolecules 41:9491

    Article  CAS  Google Scholar 

  5. Kumar PP, Paramashivappa R, Vithayathil PJ (2002) Process for isolation of cardanol from technical cashew (Anacardium occidentale L.) nut shell liquid. J Agric Food Chem 50:4705

    Article  CAS  Google Scholar 

  6. Tyman JHP, Patel MS, Manzara AP (1982) Treatment of cashewnut shell liquid. US. Patent 4352944

  7. Tyman JHP (1979) Practical liquid chromatographic separation of the phenols in technical cashew nutshell liquid from Anacardium occidentale. Chem Soc Rev 8:499

    Article  CAS  Google Scholar 

  8. Mythili CV, Retna AM, Gopalakrishnan S (2004) Synthesis, mechanical, thermal and chemical properties of polyurethanes based on cardanol. Bull Mater Sci 27:235

    Article  CAS  Google Scholar 

  9. Gopalakrishnan S, Fernando TL (2010) Processability and characteristics of novel polyurethanes from cardanol. Res J Pharm Bio Chem Sci 1:252

    CAS  Google Scholar 

  10. Suresh KI, Kishanprasad VS (2007) Process for preparing polyurethane polyol and rigid foams therefore. US. Patent 7244772 B2

  11. Suresh KI, Kishanprasad VS (2005) Synthesis, structure and properties of novel polyols from cardanol and developed polyurethanes. Ind Eng Chem Res 44:4504

    Article  CAS  Google Scholar 

  12. Rekha N, Asha SK (2008) Synthesis and FTIR spectroscopic investigation of the UV curing kinetics of telechelic urethane methacrylate crosslinkers based on the renewable resource-cardanol. J Appl Polym Sci 109:2781

    Article  CAS  Google Scholar 

  13. Bhunia HP, Jana RN, Basak A, Lenka S, Nando GB (1998) Synthesis of polyurethane from cashew nut shell liquid (CNSL), a renewable resource. J Polym Sci A Polym Chem 36:391

    Article  CAS  Google Scholar 

  14. Bhunia HP, Nando GB, Chaki TK, Basak A, Lenka S, Nayak PL (1999) Synthesis and characterization of polymers from cashew nut shell liquid (CNSL), a renewable resource II: synthesis of polyurethanes. Eur Polym J 35:1381

    Article  CAS  Google Scholar 

  15. Risfaheri TT, Nur MA, Sailah I (2009) Isolation of cardanol from cashew nut shell liquid using the vacuum distillation method. Indones J Agric 2:11

    Google Scholar 

  16. Facanha MAR, Mazzetto SE, Carioca JOB, Barros GG (2007) Evaluation of antioxidant properties of a phosphorated cardanol compound on mineral oils (NH10 and NH20). Fuel 86:2416

    Article  CAS  Google Scholar 

  17. Shahidi F (2005) Bailey’s industrial oil and fat products. Wiley, New York

    Book  Google Scholar 

  18. Coates J (2000) Interpretation of infrared spectra, a practical approach: encyclopedia of analytical chemistry. Wiley, Chichester

    Google Scholar 

  19. Young RJ, Lovell PA (2009) Introduction to polymers. CRC Press, Florida, CR

    Google Scholar 

  20. Ionescu M (2005) Chemistry and technology of polyols for polyurethanes. Rapra technology, Shropshire

    Google Scholar 

  21. Athawale V, Shetty N (2010) Synthesis and characterization of low-cost cardanol polyurethanes. Pigment Resin Technol 39:9

    Article  CAS  Google Scholar 

  22. Chattopadhyay DK, Webster DC (2009) Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci 34:1068

    Article  CAS  Google Scholar 

  23. Zhang Y, Xia Z, Huang H, Chen H (2009) Thermal degradation of polyurethane based on IPDI. J Anal Appl Pyrol 84:89

    Article  CAS  Google Scholar 

  24. Sinha BR, O’Connor D, Blum FD (1989) Characterization of substituted phenol-formaldehyde resins using solid-state carbon-13 NMR. J Appl Polym Sci 38:163

    Article  CAS  Google Scholar 

  25. Zubarev ER, Pralle MU, Li L, Stupp SL (1999) Conversion of supramolecular clusters to macromolecular object. Science 283:523

    Article  CAS  Google Scholar 

  26. Richard C, Scacchi G, Back MH (1978) Ene reactions of olefins. I. The addition of ethylene to 2-butene and the decomposition of 3-methylpentene-1. Int J Chem Kinet 10:307

    Article  CAS  Google Scholar 

  27. Gryn’ova G, Hodgson JL, Coote ML (2011) Revising the mechanism of polymer autooxidation. Org Biomol Chem 9:480

    Article  Google Scholar 

  28. Perrin FX, Irigoyen M, Aragon E, Vernet JL (2000) Artificial aging of acrylurethane and alkyd paints: a micro-ATR spectroscopic study. Polym Degrad Stab 70:469

    Article  Google Scholar 

  29. Dannoux A, Esnouf S, Amekraz B, Dauvois V, Moulin C (2008) Degradation mechanism of poly(ether-urethane) Estane® Induced by high-energy radation. II. Oxidation effects. J Polym Sci B Polym Phys 46:861

    Article  CAS  Google Scholar 

  30. Gopalakrishnan S, Fernado TL (2011) Studies on aging performance of some novel polyurethanes. J Chem Pharm Res 3:848

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Development Fund (64/2553) from Faculty of Engineering, Burapha University for financial support. SW would like to acknowledge Department of chemistry, Faculty of Science, Mahidol University. We also thank Dr. Jaray Jaratjaroonphong for his help and generous contributions of some laboratory equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pornpen Atorngitjawat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakulsaknimitr, W., Wirasate, S., Pipatpanyanugoon, K. et al. Structure and Thermal Properties of Polyurethanes Synthesized from Cardanol Diol. J Polym Environ 23, 216–226 (2015). https://doi.org/10.1007/s10924-014-0707-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-014-0707-2

Keywords

Navigation