Skip to main content
Log in

Engineering and Processing of Poly(HydroxyButyrate) (PHB) Modified by Nano-sized Graphene Nanoplatelets (GNP) and Amino-Functionalized Silica (A-fnSiO2)

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Manufacturing of plastics by biodegradable polymers can reduce the environmental impact and limit the recourse to non-renewable resources. Physical, chemical and mechanical properties of biodegradable polymers cannot often be comparable with petroleum-based plastics. However, the modification of bioplastics by physical and chemical routes can improve their performance. In this work, Poly(HydroxyButyrate) PHB is reprocessed by the dispersion of graphene nano-platelets as well as by the dispersion of Amino-Functionalized Nano-Silica (A-fnSiO2). Modification of the PHBs after compounding and pelletizing was evaluated by Fourier Transform Infrared. Thermal analysis was performed by Differential Scanning Calorimetry after extrusion and compression moulding. Hardness and scratch performance of the polymers were measured on compression molded substrates by pencil and progressive and constant load scratch tests. Chemical resistance was evaluated on compression molded substrates by dipping in aggressive acidic, basic and saline aqueous solutions. In conclusion, the PHBs modified by the graphene nanoplatelets were found to be very promising, featuring good chemical inertness, hardness and mechanical strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Chudnovsky A, Zhou Z, Zhang H, Sehanobish K (2012) Lifetime assessment of engineering thermoplastics. Int J Eng Sci 59:108–139

    Article  Google Scholar 

  2. Wang L, Wang Y-N, Huang Z-G, Weng Y-X (2015) Heat resistance, crystallization behavior, and mechanical properties of polylactide/nucleating agent composites. Mater Des 66:7–15

    Article  CAS  Google Scholar 

  3. Mohanty AK, Misra M, Hinrichsen G (2000) Biofibers, biodegradable polymers and biocomposites—an overview. Macromol Mater Eng 276(277):1–24

    Article  Google Scholar 

  4. Mathew AP, Oksman K, Sain M (2005) Mechanical properties of biodegradable cellulose (MCC). J Appl Polym Sci 97:2014–2025

    Article  CAS  Google Scholar 

  5. Oksman K, Skrifvars M, Selin JF (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol 63:1317–1324

    Article  CAS  Google Scholar 

  6. Huda MS, Drzal LT, Mohanty AK, Misra M (2006) Chopped glass and recycled newspapers as reinforcement fibers in injection molded poly(lactic acid) (PLA) composites: a comparative study. Compos Sci Technol 66:1813–1824

    Article  CAS  Google Scholar 

  7. Shibata M, Ozawa K, Teramoto N, Yosomiya R, Takeishi H (2003) Biocomposites made from short abaca fiber and biodegradable polyesters. Macromol Mater Eng 288:35–43

    Article  CAS  Google Scholar 

  8. Bravo A, Toubal L, Koffi D, Erchiqui F (2015) Development of novel green and biocomposite materials: tensile and flexural properties and damage analysis using acoustic emission. Mater Des 66:16–28

    Article  CAS  Google Scholar 

  9. Abdellaoui H, Bensalah H, Echaabi J, Bouhfid R, Qaiss A (2015) Fabrication, characterization and modelling of laminated composites based on woven jute fibres reinforced epoxy resin. Mater Des 68:104–113

    Article  CAS  Google Scholar 

  10. Mohanty AK, Khan MA, Sahoo S, Hinrichsen G (2000) Effect of chemical modification on the performance of biodegradable jute–yarn/biopol composites. J Mater Sci 35:2589–2595

    Article  CAS  Google Scholar 

  11. Bodros E, Pillin I, Montrelay N, Baley C (2007) Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications? Compos Sci Technol 67(3–4):462–470

    Article  CAS  Google Scholar 

  12. Lee SG, Choi SS, Park WH, Cho D (2003) Characterization of surface modified flax fibers and their biobased composites with PHB. Macromol Symp 197:89–99

    Article  CAS  Google Scholar 

  13. Wong S, Shanks R, Hodzik A (2002) Properties of poly(3-hydroxybutyric acid) composites with flax fibres modified by plasticizer absorption. Macromol Mater Eng 287:647–655

    Article  CAS  Google Scholar 

  14. Singh S, Mohanty AK, Sugie T, Takai Y, Hamada H (2008) Renewable resource based biobased composites from natural fiber and polyhydroxybutyrate-co-valerate (PHBV) bioplastic. Compos A 39:875–886

    Article  Google Scholar 

  15. Melo JDD, Carvalho LFM, Medeiros AM, Souto CRO, Paskocimas CA (2012) A biodegradable composite material based on polyhydroxybutyrate (PHB) and carnauba fibers. Compos B 43:2827–2835

    Article  CAS  Google Scholar 

  16. Pankova YN, Shchegolikhin AN, Iordanskii AL, Zhulkina AL, Ol’khov AA, Zaikov GE (2010) The characterization of novel biodegradable blends based on polyhydroxybutyrate: the role of water transport. J Mol Liq 156:65–69

    Article  CAS  Google Scholar 

  17. Medvecky L, Sopcak T (2012) Preparation and properties of octacalcium phosphate-polyhydroxybutyrate thin film composites. Mater Lett 68:157–160

    Article  CAS  Google Scholar 

  18. Noohom W, Jack KS, Martin D, Trau M (2009) Understanding the roles of nanoparticle dispersion and polymer crystallinity in controlling the mechanical properties of HA/PHBV nanocomposites. Biomed Mater 4:015003

    Article  Google Scholar 

  19. Ojijo V, Ray SS (2013) Processing strategies in bionanocomposites. Prog Polym Sci 38:1543–1589

    Article  CAS  Google Scholar 

  20. Ahmadi-Moghadam B, Sharafimasooleh M, Shadlou S, Taheri F (2015) Effect of functionalization of graphene nanoplatelets on the mechanical response of graphene/epoxy composites. Mater Des 66:142–149

    Article  CAS  Google Scholar 

  21. Li Y, Pan D, Chen S, Wang Q, Pan G, Wang T (2013) In situ polymerization and mechanical, thermal properties of polyurethane/graphene oxide/epoxy nanocomposites. Mater Des 47:850–856

    Article  CAS  Google Scholar 

  22. El Achaby M, Qaiss A (2013) Processing and properties of polyethylene reinforced by graphene nanosheets and carbon nanotubes. Mater Des 44:81–89

    Article  Google Scholar 

  23. Gisario A, Barletta M, Conti C, Guarino S (2011) Springback control in sheet metal bending by laser-assisted bending: experimental analysis, empirical and neural network modelling. Opt Laser Eng 49:1372–1383

    Article  Google Scholar 

  24. Xu Z, Liu Q, Finch JA (1997) Silanation and stability of 3-aminopropryl triethoxy silane on nanosized superparamagnetic particles: I. Direct silanation. Appl Surf Sci 120:269–278

    Article  CAS  Google Scholar 

  25. Shukla SR, Harad AM (2006) Aminolysis of polyethylene terephthalate waste. Polym Degrad Stab 91:1850–1854

    Article  CAS  Google Scholar 

  26. Hoang CN, Dang YH (2013) Aminolysis of poly(ethylene terephthalate) waste with ethylenediamine and characterization of α, ω-diamine products. Polym Degrad Stab 98:697–708

    Article  CAS  Google Scholar 

  27. Song W, Zheng Z, Tang W, Wang X (2007) A facile approach to covalently functionalized carbon nanotubes with biocompatible polymer. Polymer 48:3658–3663

    Article  CAS  Google Scholar 

  28. Yoon JT, Jeong YG, Lee SC, Min BG (2009) Influences of poly(lactic acid)-grafted carbon nanotube on thermal, mechanical, and electrical properties of poly(lactic acid). Polym Adv Technol 20:631–638

    Article  CAS  Google Scholar 

  29. Amirian M, Chakoli AN, Sui JH, Cai W (2012) Enhanced mechanical and photoluminescence effect of poly(L-lactide) reinforced with functionalized multiwalled carbon nanotubes. Polym Bull 68:1747–1763

    Article  CAS  Google Scholar 

  30. Olalde B, Aizpurua JM, Garcia A, Bustero I, Obieta I, Jurado MJ (2008) Singlewalled carbon nanotubes and multiwalled carbon nanotubes functionalized with poly(L-lactic acid): a comparative study. J Phys Chem C 112:10663–10667

    Article  CAS  Google Scholar 

  31. Chen GX, Kim HS, Park BH, Yoon JS (2005) Controlled functionalization of multiwalled carbon nanotubes with various molecular-weight poly(L-lactic acid). J Phys Chem B 109:22237–22243

    Article  CAS  Google Scholar 

  32. Wellen RMR, Rabello MS, Fechine GJM, Canedo EL (2013) The melting behaviour of poly(3-hydroxybutyrate) by DSC. Reproducibility study. Polym Test 32:215–220

    Article  CAS  Google Scholar 

  33. Gunaratne LMWK, Shanks RA, Amarasinghe G (2004) Thermal history effects on crystallisation and melting of poly(3-hydroxybutyrate). Thermochim Acta 423:127–135

    Article  CAS  Google Scholar 

  34. Chen C, Fei B, Peng S, Zhuang Y, Dong L, Feng Z (2002) Nonisothermal crystallization and melting behavior of poly(3-hydroxybutyrate) and maleated poly(3-hydroxybutyrate). Eur Polym J 38:1663–1670

    Article  CAS  Google Scholar 

  35. Armentano I, Bitinis N, Fortunati E, Mattioli S, Rescignano N, Verdejo R, Lopez-Machado MA, Kenny JM (2013) Multifunctional nanostructured PLA materials for packaging and tissue engineering. Prog Polym Sci 38:1720–1747

    Article  CAS  Google Scholar 

  36. Kirkland NT, Schiller T, Medhekar N, Birbilis N (2012) Exploring graphene as a corrosion protection barrier. Corros Sci 56:1–4

    Article  CAS  Google Scholar 

  37. Liu J, Hua L, Li S, Yu M (2014) Graphene dip coatings: an effective anticorrosion barrier on aluminum. Appl Surf Sci. doi:10.1016/j.apsusc.2014.11.187

    Google Scholar 

  38. Conradi M, Kocijan A, Kek-Merl D, Zorko M, Verpoest I (2014) Mechanical and anticorrosion properties of nanosilica-filled epoxy-resin composite coatings. Appl Surf Sci 292:432–437

    Article  CAS  Google Scholar 

  39. Bull SJ (1991) Failure modes in scratch adhesion testing. Surf Coat Technol 50:25–32

    Article  CAS  Google Scholar 

  40. Chudnovsky A (2014) Slow crack growth, its modeling and crack-layer approach: a review. Int J Eng Sci 83:6–41

    Article  Google Scholar 

  41. Jardret V, Morel P (2003) Viscoelastic effects on the scratch resistance of polymers: relationship between mechanical properties and scratch properties at various temperatures. Prog Org Coat 48:322–331

    Article  CAS  Google Scholar 

  42. Barletta M, Pezzola S, Vesco S, Tagliaferri V, Trovalusci F (2014) Experimental evaluation of plowing and scratch hardness of aqueous two-component polyurethane (2K-PUR) coatings on glass and polycarbonate. Prog Org Coat 77:636–645

    Article  CAS  Google Scholar 

  43. Barletta M, Rubino G, Tagliaferri V, Vesco S (2014) Design and manufacture of photoluminescent coatings on stainless steel substrates. Colloid Surface A 455:147–155

    Article  CAS  Google Scholar 

  44. Venkatesh GS, Deb A, Karmarkar A, Chauhan SS (2012) Effect of nanoclay content and compatibilizer on viscoelastic properties of montmorillonite/polypropylene nanocomposites. Mater Des 37:285–291

    Article  CAS  Google Scholar 

  45. Macchetta A, Pavan A, Savadori A (1989) Processing of viscoelastic data for engineering design with polymers. Mater Des 10:293–296

    Article  CAS  Google Scholar 

  46. Dusunceli N, Colak OU (2008) The effects of manufacturing techniques on viscoelastic and viscoplastic behavior of high density polyethylene (HDPE). Mater Des 29:1117–1124

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Barletta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barletta, M., Trovalusci, F., Puopolo, M. et al. Engineering and Processing of Poly(HydroxyButyrate) (PHB) Modified by Nano-sized Graphene Nanoplatelets (GNP) and Amino-Functionalized Silica (A-fnSiO2). J Polym Environ 24, 1–11 (2016). https://doi.org/10.1007/s10924-016-0753-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0753-z

Keywords

Navigation