Skip to main content
Log in

Adsorption of Crystal Violet Dye from Aqueous Solution by Poly(Acrylamide-co-Maleic Acid)/Montmorillonite Nanocomposite

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Poly(acrylamide-co-maleic acid)/montmorillonite nanocomposites, were synthesized via in situ polymerization with different maleic acid and MMT content. The capability of the hydrogel for adsorption of crystal violet (CV) was investigated in aqueous solutions at different pH values and temperatures. The pseudo-second-order kinetics model could fit successfully the adsorption kinetic data. The effects of maleic acid to acrylamide molar ratio (MAR), weight percent of MMT (MMT%), the pH of medium and the solution temperature (T) on the CV adsorption capacity (q e ) of adsorbents were studied by Taguchi experimental design approach. The results indicated that increasing the MMT% leads to a greater q e . The q e value of adsorbents increased also with increasing both MAR and pH, while reduced when the temperature of medium increased. The relatively optimum conditions to achieve a maximum CV adsorption capacity for P(AAm/MA)/MMT adsorbents were found as: 0.06 for MAR and 5 % of MMT%, medium pH = 7 and T = 20 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yilmaz M, Erdemir S (2013) Turk J Chem 37:558–585

    Article  CAS  Google Scholar 

  2. Bayramoglu G, Altintas B, Arica MY (2009) Chem Eng J 152:339–346

    Article  CAS  Google Scholar 

  3. Li S (2010) Bioresour Technol 101:2197–2202

    Article  CAS  Google Scholar 

  4. Zhang D (2013) Acta Chim Slov 6:245–255

    CAS  Google Scholar 

  5. Monash P, Pugazhenthi G (2009) Adsorption 15:390–405

    Article  CAS  Google Scholar 

  6. Mohanty K, Naidu JT, Meikap BC, Biswas MN (2006) Ind Eng Chem Res 45:5165–5171

    Article  CAS  Google Scholar 

  7. Liu Y, Zheng Y, Wang AJ (2010) Environ Sci 22:486–493

    Article  CAS  Google Scholar 

  8. Monvisade P, Siriphannon P (2009) Appl Clay Sci 42:427–431

    Article  CAS  Google Scholar 

  9. Kasgoz H, Durmus A, Kasgoz A (2008) Polym Adv Technol 19:213–220

    Article  CAS  Google Scholar 

  10. Li P, Siddaramaiah, Kim NH, Yoo G-H, Lee J-H (2009) J Appl Polym Sci 111:1786–1798

    Article  CAS  Google Scholar 

  11. Panic VV, Senslija SI, Nesic AR, Velickovic SJ (2013) Hem Ind 67:881–900

    Article  CAS  Google Scholar 

  12. Patil SA, Rane BR, Bakliwal SR, Pawar SP (2011) Int J Res Ayurveda Pharm 2:758–766

    CAS  Google Scholar 

  13. Latif IA, Abdullah HM, Saleem MH (2016) Am J Polym Sci 6:50–57

    Google Scholar 

  14. Kaplan M, Kasgoz H (2011) Polym Bull 67:1153–1168

    Article  CAS  Google Scholar 

  15. Inam R, Gumus Y, Caykara TJ (2004) Appl Polym Sci 94:2401–2406

    Article  CAS  Google Scholar 

  16. Kasgoz H, Durmus A (2008) Polym Adv Technol 19:838–845

    Article  CAS  Google Scholar 

  17. Karadag E, Kundakci S, Uzum OB, Saraydin D, Guven O (2014) Hacet J Biol Chem 42:71–79

    Article  Google Scholar 

  18. Karadag E, Uzum OB, Saraydin D (2002) Eur Polym J 38:2133–2141

    Article  CAS  Google Scholar 

  19. Roy RK (2001) Design of experiments using the Taguchi approach: 16 steps to product and process improvement. Wiley, Hardcover

    Google Scholar 

  20. Dadkhah D, Navarchian AH, Aref L, Tavakoli N (2014) Adv Polym Technol 33:1–10

    Article  Google Scholar 

  21. Wang L, Zhang J, Wang A (2008) Colloids Surf A Physicochem Eng Asp 322:47–53

    Article  CAS  Google Scholar 

  22. Guclu G, Al E, Emik S, Iylim TB, Ozgumus S, Ozyurek M (2010) Polym Bull 65:333–346

    Article  CAS  Google Scholar 

  23. Chen DTY, Laidler KJ (1959) Can J Chem 37:599–612

    Article  CAS  Google Scholar 

  24. Alshabanat M, Al-Arrashand A, Mekhamer WJ (2013) Nanomaterials 2013:1–12

    Article  Google Scholar 

  25. Yeh JM, Liou SJ, Chang YW (2004) Appl Polym Sci 91:3489–3496

    Article  CAS  Google Scholar 

  26. Pavia DL, Lampman GM, Kriz GS (1996) Introduction to spectroscopy. Saunders Golden Sunburst Series, Washington

    Google Scholar 

  27. Silverstein RM, Bassler GC, Morrill TC (1991) Spectrometric identification of organic compounds. Wiley, New York

    Google Scholar 

  28. Klinpituksa P, Intajun C (2005) Songklanakarin J Sci Technol 27:1103–1112

    Google Scholar 

  29. Mohan YM, Sudhakar K, Murthy PSK, Raju KM (2006) Int J Polym Mater 55:513–536

    Article  CAS  Google Scholar 

  30. Oztop HN, Hepokur C, Saraydin D (2010) Polym Bull 64:27–40

    Article  CAS  Google Scholar 

  31. Rzayev ZMO, Senol B, Soylemez EA (2011) Int J Eng Sci Technol 3:78–82

    Google Scholar 

  32. Mittal V (2009) Materials 2:992–1057

    Article  CAS  Google Scholar 

  33. Pavildou S, Papaspyrides CD (2009) Prog Polym Sci 33:1119–1198

    Article  Google Scholar 

  34. Annabi N, Nichol JW, Zhong X, Ji C, Koshy S, Khademhosseini A, Dehghani F (2010) Tissue Eng Part B Rev 16:371–383

    Article  CAS  Google Scholar 

  35. Patil S, Renukdas S, Patel N (2012) J Chem Biol Phys Sci Sec D 2:2158–2174

    CAS  Google Scholar 

  36. Zeng QH, Yu AB, Lu GQ, Paul DR (2005) J Nanosci Nanotechnol 5:1574–1592

    Article  CAS  Google Scholar 

  37. Venckatesh R, Amudha T, Sivaraj R, Chandramohan M, Jambulingam M (2010) Int J Eng Sci Technol 2:2040–2050

    Google Scholar 

  38. Prasad AL, Santhi T (2012) Sustain Environ Res 22:113–122

    CAS  Google Scholar 

  39. Sengupta P, Balomajumder C (2014) Int J Res Eng Technol 3:700–707

    Google Scholar 

  40. Radnia H, Ghoreyshi AA, Younesi H (2011) Iran J Energy Environ 3:250–257

    Google Scholar 

  41. Ho Y-S (2006) J Hazard Mater B136:681–689

    Article  Google Scholar 

  42. Jr Weber WJ (1972) Physicochemical processes: for water quality control. Wiley-Interscience, New York

    Google Scholar 

  43. Nadeem U (2013) Eur Chem Bull 2:706–708

    CAS  Google Scholar 

  44. Kevadiya BD, Pawar RR, Rajkumar S, Jog R, Baravalia YK, Jivrajani H, Chotai N, Sheth NR, Bajaj HC (2013) Biochem Biophys 1:43–60

    Google Scholar 

  45. Natkanski P, Kuoetrowski P (2013) Polimery 58:512–518

    CAS  Google Scholar 

  46. Kamal H, El-Sayed AH, Sabaa MW, Maher EM, Mohamed MM (2014) J Nucl Tech Appl Sci 2:523–537

    Google Scholar 

  47. Fil BA, Ozmetin C, Korkmaz M (2012) Bull Korean Chem Soc 33:3184–3190

    Article  Google Scholar 

  48. Alsenani G (2013) J Am Sci 9:30–35

    Google Scholar 

  49. Wang L, Zhang J, Wang A (2008) Colloids Surf A 322:47–53

    Article  CAS  Google Scholar 

  50. Taher A, Mohsin M, Farooqui M, Farooqui M (2012) J Adv Sci Res 3:36–44

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Iran National Science Foundation (INSF) according to the Project Number 88001411.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir H. Navarchian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aref, L., Navarchian, A.H. & Dadkhah, D. Adsorption of Crystal Violet Dye from Aqueous Solution by Poly(Acrylamide-co-Maleic Acid)/Montmorillonite Nanocomposite. J Polym Environ 25, 628–639 (2017). https://doi.org/10.1007/s10924-016-0842-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0842-z

Keywords

Navigation