Skip to main content
Log in

Extraction of Microcrystalline Cellulose from Cotton Sliver and Its Comparison with Commercial Microcrystalline Cellulose

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The work was aimed at the extraction of microcrystalline cellulose (EMC) from raw cotton sliver (RCS) by acid hydrolysis using sulphuric acid. The EMC was characterized and compared with commercial grade microcrystalline cellulose (CMC). Basic chemical pretreatments, bleaching and scouring were given to the RCS before extraction to remove natural colourants and hydrophobic impurities like oils, waxes, minerals, fats etc. The properties of EMC and CMC are considerably different from the RCS. Average particle size obtained was around 5–10 µm for EMC and CMC respectively. The EMC suspension was more stable than CMC suspension. The RCS, EMC and CMC were characterized by using X-ray diffraction, thermogravimetric analysis, Fourier transform infrared spectroscopy, scanning electronic microscopy and contact angle. EMC prepared from RCS has properties at par with CMC. Cotton being rich in cellulose content can be potentially used as the source for microcellulose extraction, particularly in the production of hydrophilic microcomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abdel-Halim A (2014) Chemical modification of cellulose extracted from sugarcane bagasse: preparation of hydroxyethyl cellulose. Arabian J Chem 7:362–371. doi:10.1016/j.arabjc.2013.05.006

    Article  CAS  Google Scholar 

  2. Abraham E, Deepa B, Pothan L, Jacob M, Thomas S, Cvelbar U, Anandjiwala R (2011) Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohydr Polym 86:1468–1475. doi:10.1016/j.carbpol.2011.06.034

    Article  CAS  Google Scholar 

  3. Achor M, Oyeniyi Y, Yahaya A (2014) Extraction and characterization of microcrystalline cellulose obtained from the back of the fruit of Lageriana siceraria (water gourd). J Appl Pharm Sci 4(1):057–060. doi:10.7324/JAPS.2014.40109

    Google Scholar 

  4. Agblevor FA, Ibrahim MM, El-Zawawy WK (2007) Coupled acid and enzyme mediated production of microcrystalline cellulose from corn cob and cotton gin waste. Cellulose 14:247–256. doi:10.1007/s10570-006-9103-y

    Article  CAS  Google Scholar 

  5. Azizi SM, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626

    Article  Google Scholar 

  6. Azubuike C, Esiaba J (2012) Investigation into some physico-technical and tableting properties of low-crystallinity powdered cellulose prepared from corn residues. J Pharm Res Opin 2(8):94–98

    CAS  Google Scholar 

  7. Azubuike CP, Okhamafe AO (2012) Physicochemical, spectroscopic and thermal properties of microcrystalline cellulose derived from corn cobs. Int J Recycling Org Waste Agric, 1(9), 1–7. Retrieved from http://www.ijrowa.com/content/1/1/9

  8. Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054

    Article  CAS  Google Scholar 

  9. Bhatnagar A, Sain M (2005) Processing of Cellulose Nanofiber-reinforced Composites. J Reinf Plasti Compos 24(12):1259–1268. doi: 10.1177/0731684405049864

    Article  CAS  Google Scholar 

  10. Capadona JR, Shanmuganathan K, Trittschuh S, Seidel S, Rowan SJ, Weder C (2009) Extraction of nanocellulose from cotton sliver. Biomacromolecules 10:712–716

    Article  CAS  Google Scholar 

  11. Chauhan YP, Sapkal RS, Sapkal VS, Zamre GS (2009) Microcrystalline cellulose from cotton rags (waste from garment and hosiery industries). Int J Chem Sci 7(2):681–688

    CAS  Google Scholar 

  12. Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011) Individulization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical prtreatment. Carbohydr Polym 83:1804–1811. doi:10.1016/j.carbpol.2010.10.040

    Article  CAS  Google Scholar 

  13. Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433–442. doi:10.1007/s10570-011-9497-z

    Article  CAS  Google Scholar 

  14. Chenampulli S, Unnikrishnan G, Sujith A, Thomas S, Francis T (2013) Cellulose nano-particles from Pandanus : viscometric and crystallographic studies. Cellulose 20:429–438. doi:10.1007/s10570-012-9831-0

    Article  CAS  Google Scholar 

  15. Crotogino R (2012) The economic impact of NanoCellulose. International symposium on assessing the economic impact of nanotechnology.

    Google Scholar 

  16. Das K, Ray D, Bandyopadhyay NR, Ghosh T, Mohanty AK, Misra M (2009) A study of the mechanical, thermal and morphological properties of microcrystalline cellulose particles prepared from cotton slivers using different acid concentrations. Cellulose 16:783–793

    Article  CAS  Google Scholar 

  17. Edgar KJ, Buchanan CM, Debenham JS, Paul AR, Seiler BD, Shelton MC, Tindall D (2001) Advances in cellulose ester performance and application. Prog Polym Sci 26:1605–1688

    Article  CAS  Google Scholar 

  18. Fahma F, Iwamoto S, Hori N, Iwata T, Takemura A (2010) Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch. Cellulose 17:977–985. doi:10.1007/s10570-010-9436-4

    Article  CAS  Google Scholar 

  19. Fahma F, Iwamoto S, Hori N, Iwata T, Takemura A (2011) Effect of pre-acid-hydrolysis treatment on morphology and properties of cellulose nanowhiskers from coconut husk. Cellulose 18:443–450. doi:10.1007/s10570-010-9480-0

    Article  CAS  Google Scholar 

  20. Foner HA, Adan N (1983) The characterization of papers by X-ray diffraction (XRD) : measurement of cellulose crystallinity and determination of mineral composition. J Forensic Sci Soc 23:313–321

    Article  CAS  Google Scholar 

  21. Gaonkar SM, Kulkarni PR (1989) Microcrystalline cellulose from coconut shells. Acta Polym 40(4):292–293

    Article  CAS  Google Scholar 

  22. Gardner DJ, Oporto GS, Mills R (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhes Sci Technol 22:545–567. doi:10.1163/156856108X295509

    Article  CAS  Google Scholar 

  23. Gardner DJ, Oporto GS, Mills R, Samir MA (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhes Sci Technol 22:545–567. doi:10.1163/156856108X295509

    Article  CAS  Google Scholar 

  24. Gautam SP, Bundela PS, Pandey AK, Awasthi MK, Sarsaiya S (2010) A review on systematic study of cellulose. J Appl Nat Sci 2(2):330–343

    Google Scholar 

  25. Giri J, Adhikari R (2013) A Brief review on extraction of nanocellulose and its application. BIBECHANA 9:81–87

    Google Scholar 

  26. Haafiz MM, Eichhorn SJ, Hassan A, Jawaid M (2013). Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohydr Polym, 93, 628–634. doi: 10.1016/j.carbpol.2013.01.035

    Article  Google Scholar 

  27. Herrick F, Casebier R, Hamilton J, Sandberg K (1982) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci 37:797–813

    Google Scholar 

  28. Ilindra A, Dhake JD (2008) Microcrystalline cellulose from bagasse and rice straw. Indian J Chem Technol 15:497–499

    CAS  Google Scholar 

  29. Jahan MS, Saeed A, He Z, Ni Y (2011) Jute as raw material for the preparation of microcrystalline cellulose. Celluose 18(2):451–459. doi:10.1007/s10570-010-9481-z

    Article  CAS  Google Scholar 

  30. Jeoh T, Ishizawa CI, Davis MF, Himmel ME, Adney WS, Johnson D (2007) Cellulase digestibility of pretreated biomass is limited by celluloseaccessibility. Biotechnol Bioeng 98:112–122

    Article  CAS  Google Scholar 

  31. Jinbao L, Dandan Q, Meiyun Z, Huijuan X, Xiangrong Z (2015) Joint action of ultrasonic and Fe3 + to improve selectivity of acidhydrolysis for microcrystalline cellulose. Carbohydr Polym, 129, 44–49. doi: 10.1016/j.carbpol.2015.04.034

    Article  Google Scholar 

  32. Kalit RD, Nath Y, Ochubiojo ME, Buragohain A K (2013) Extraction and characterization of microcrystalline cellulose from fodder grass; Setaria glauca (L) P. Beauv, and its potential as a drug delivery vehicle for isoniazid, a first line antituberculosis drug. Colloids Surf B, 108, 85–89. doi: 10.1016/j.colsurfb.2013.02.016

    Article  Google Scholar 

  33. Klemm D, Heublein B, Fink H, Bohn A (2005) Cellulose fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393. doi:10.1002/anie.200460587

    Article  CAS  Google Scholar 

  34. Kulpinski P, Namyslak M (2012) Luminescent cellulose fibers activated by Eu 3 + -doped nanoparticles. Cellulose 19:1271–1278. doi:10.1007/s10570-012-9709-1

    Article  CAS  Google Scholar 

  35. Li R, Fei J, Cai Y, Li Y, Feng J, Yao J (2009) Cellulose whiskers extracted from mulberry: a novel biomass production. Carbohydr Polym 76(1):94–99. doi:10.1016/j.carbpol.2008.09.034

    Article  CAS  Google Scholar 

  36. Lima MM, Borsali R (2004) Rodlike cellulose microcrystals structure, properties, and applications. Macromol Rapid Commun 25(7):771–787. doi:10.1002/marc.200300268

    Article  Google Scholar 

  37. Liu J, Lam JW, Tang BZ (2009) Acetylenic polymers: Syntheses, structures, and functions. Chem Rev 109(11):5799–5867

    Article  CAS  Google Scholar 

  38. Łojewska J, Miśkowiec P, Łojewski T, Proniewicz L (2005) Cellulose oxidative and hydrolytic degradation In situ FTIR approach. Polym Degrad Stab 88(3):512–520. doi:10.1016/j.polymdegradstab.2004.12.012

    Article  Google Scholar 

  39. Majeed K, Jawaid M, Hassan A, Abu BA, Abdul KH, Salema A (2013) Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Mater Des 46:391–410. doi:10.1016/j.matdes.2012.10.044

    Article  CAS  Google Scholar 

  40. Mora´n JI, Alvarez VA, Cyras VP, Va´zquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159. doi:10.1007/s10570-007-9145-9

    Article  Google Scholar 

  41. Morais JP, Rosa, M. d., Filho, M. d., Nascimento LD, Nascimento DM, Cassales R (2013) Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydr Polym 91:229–235

    Article  CAS  Google Scholar 

  42. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082. doi:10.1021/ja0257319

    Article  CAS  Google Scholar 

  43. Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose 1(alpha), from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300–14306

    Article  CAS  Google Scholar 

  44. Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose iα from synchrotron x-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300–14306. doi:10.1021/ja037055w

    Article  CAS  Google Scholar 

  45. Nuruddin M, Chowdhury A, Haque SA, Rahman M, Farhad SF, Jahan MS, Quaiyyum A (2011) Extraction and characterization of cellulose microfibrils from agricultural wastes in an integrated biorefinery initiative. Cellul Chem Technol 45:347–354

    CAS  Google Scholar 

  46. Okwonna OO (2013) The effect of pulping concentration treatment on the properties of microcrystalline cellulose powder obtained from waste paper. Carbohydr Polym, 28, 721–725. doi: 10.1016/j.carbpol.2013.06.039

    Google Scholar 

  47. Rosa M, Medeiros ES, Malmonge JA, Gregorski KS, Wood D, Mattoso LH, Imam SH (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr Polym 81:83–92. doi:10.1016/j.carbpol.2010.01.059

    Article  CAS  Google Scholar 

  48. Sain M, Panthapulakkal S (2006) Bioprocess preparation of wheat straw fibers and their characterization. Ind Crops Prod 23(1):1–8. doi:10.1016/j.indcrop.2005.01.006

    Article  CAS  Google Scholar 

  49. Sanghamitra S, James DM, Dimitris SA (2013) Review of cellulose non-derivatizing solvent interactions with emphasis on activity in inorganic molten salt hydrates. ACS Sustain Chem Eng 1:858–870. doi:10.1021/sc400085a

    Article  Google Scholar 

  50. Sczostak A (2009) Cotton linters: an alternative cellulosic raw material. Macromol Symp 280:45–53. doi:10.1002/masy.200950606

    Article  CAS  Google Scholar 

  51. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using X-ray diffrac-tometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  52. Shanmugam N, Nagarkar RD, Khurade M (2015) Microcrystalline cellulose powder from banana pseudostem fibres using bio-chemical route. Indian J Nat Prod Resour 6(1):42–50

    CAS  Google Scholar 

  53. Sheltami RM, Abdullah I, Ahmad I (2012) Structural characterisation cellulose and nanocellulose extracted from Mengkuang leaves. Adv Mater Res 545:119–123

    Article  Google Scholar 

  54. Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432. doi:10.1021/bm801193d

    Article  CAS  Google Scholar 

  55. Siro´ I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494. doi:10.1007/s10570-010-9405-y

    Article  Google Scholar 

  56. Socrates G (2004) Infrared and Raman characteristic group frequencies. Wiley, New York, doi:10.1002/jrs.1238

    Google Scholar 

  57. Spori DM, Drobek T, Zürcher S, Ochsner M, Sprecher C, Mühlebach A, Spencer ND (2008) Beyond the lotus effect: roughness influences on wetting over a wide surface-energy range. Langmuir 24:5411–5417. doi:10.1021/la800215r

    Article  CAS  Google Scholar 

  58. Stelte W, Sanadi AR (2009) Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Ind Eng Chem Res 48:11211–11219. doi:10.1021/ie9011672

    Article  CAS  Google Scholar 

  59. Sun R, Tomkinson J, Wang Y, Xiao B (2000) Physico-chemical and structural characterization of hemicelluloses from wheat straw by alkaline peroxide extraction. Polymer 41(7):2647–2656. doi:10.1016/S0032-3861(99)00436-X

    Article  CAS  Google Scholar 

  60. Sun X, Lu C, Liu Y, Zhang W, Zhang X (2014) Melt-processed poly(vinyl alcohol) composites filled with microcrystalline cellulose from waste cotton fabrics. Carbohyd Polym, 101, 642–649. doi: 10.1016/j.carbpol.2013.09.088

    Article  CAS  Google Scholar 

  61. Sun X, Xu F, Sun R, Fowler P, Baird M (2005) Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydr Res 340(1):97–106. doi:10.1016/j.carres.2004.10.022

    Article  CAS  Google Scholar 

  62. Tatjana T, Nierstrasz VA, Bautista L, Jocic D, Navarro A, Warmoeskerken MM (2007) Analysis of the effects of catalytic bleaching on cotton. Cellulose 14:385–400. doi:10.1007/s10570-007-9120-5

    Article  Google Scholar 

  63. de Morais Teixeira E, Correˆa AC, Manzoli A, de Lima Leite F, de Oliveira CR, Mattoso LH (2010) Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17:595–606. doi:DOI:10.1007/s10570-010-9403-0

    Article  Google Scholar 

  64. Thomas S, Paul S, Pothan L, Deepa B (2011) Natural fibres: structure, properties and applications. Springer, Berlin, doi:10.1007/978-3-642-17370-7

    Google Scholar 

  65. Topalovic T, Nierstrasz VA, Bautista L, Jocic D, Navarro A, Warmoeskerken MM (2007) Analysis of the effects of catalytic bleaching on cotton. Cellulose 14:385–400. doi:10.1007/s10570-007-9120-5

    Article  CAS  Google Scholar 

  66. Tripp VW, Moore AT, Rollins ML (1951) Some observations on the constitution of the primary wall of the cotton fibe. Text Res J 21:886–894

    Article  CAS  Google Scholar 

  67. U.S. and Global Market Fundamental. (2012, August). Monthly Economic Latter

  68. Van de Vyver S, Geboers J, Jacobs PA, Sels BF (2011) Recent advances in the catalytic conversion of cellulose. ChemCatChem 3(1):82–94

    Article  Google Scholar 

  69. Wang N, Ding E, Cheng R (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48:3486–3493. doi:10.1016/j.polymer.2007.03.062

    Article  CAS  Google Scholar 

  70. Xiong R, Zhang X, Tian D, Zhou Z, Lu C (2012) Comparing microcrystalline with spherical nanocrystalline cellulose from waste cotton fabrics. Cellulose 19:1189–1198

    Article  CAS  Google Scholar 

  71. Zhang J, Kwok DY (2003). The molecular origin of contact angles in terms of different combining rules for intermolecular potentials. Contact Angle Wettability Adhes 3:118–159

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge word bank sponsored TEQIP-II for funding this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravindra D. Kale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kale, R.D., Bansal, P.S. & Gorade, V.G. Extraction of Microcrystalline Cellulose from Cotton Sliver and Its Comparison with Commercial Microcrystalline Cellulose. J Polym Environ 26, 355–364 (2018). https://doi.org/10.1007/s10924-017-0936-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-0936-2

Keywords

Navigation