Skip to main content
Log in

Active and Intelligent Films Made from Starchy Sources/Blackberry Pulp

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Functional, active and intelligent films were prepared from biopolymeric matrices (plantain starch and pre-gelatinized plantain flour) with and without the addition of a natural filler (blackberry pulp) using the casting methodology. A thorough examination of the physicochemical, antioxidant and antimicrobial properties of the both the matrices used and the developed films was then carried out. The films developed from matrices incorporating the blackberry pulp were more amorphous, thicker, less sensitive to moisture, and with higher melting temperatures than the films made without this natural filler. The degree of substitution, average molecular weight and attenuated total reflectance Fourier transform infrared spectroscopy of the films made with blackberry pulp suggest that the starch chains were cross-linked. This is probably because the citric acid contained in the pulp functions as a cross-linking agent. Films with added blackberry pulp responded to changes in pH, i.e. were pH-sensitive, and also showed antimicrobial activity especially against Escherichia coli. In general, the addition of blackberry pulp improved the physicochemical and mechanical properties of the films developed due to cross-linking, as well as increasing their antioxidant activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Losada PP, Cacho J, Iglesias MJ, Hernández-Agero TO, de la Puerta CN, Rodríguez RL (2011) Revista del Comité Científico de la AESAN, pp 89–105

  2. Gontard N (2006) Tailor made food packaging concept. IUFoST, 13th World Congress of Food Science and Technology, Food is Life, September 2006, Nantes, France, pp 17–21

  3. Yam KL (2012) Emerging food packaging technologies: principles and practice. Woodhead Publishing, Cambridge, pp 137–152

    Book  Google Scholar 

  4. Gontard N (2000) In: Paris N, Gontard (eds) Les Emballages Actifs. Tech & Doc Editions, Lavoisier, France

  5. Vanderroost M, Ragaert P, Devlieghere F, De Meulenaer B (2014) Trends Food Sci Tech 39:47–62

    Article  CAS  Google Scholar 

  6. Dainelli D, Gontard N, Spyropoulos D,, Tobback P, Zondervan-van den Beuken E (2008) Trends Food Sci Tech 19:S103–S112

    Article  CAS  Google Scholar 

  7. Restuccia D, Spizzirri UG, Parisi OI, Cirillo G, Curcio M, Iemma F, Puoci F, Vinci G, Picci N (2010) Food Control 21:1425–1435

    Article  Google Scholar 

  8. Terci DBL, Rossi AV (2002) Quím Nova 25:684–688

    Article  Google Scholar 

  9. Chigurupati N, Saiki L, Gayser C, Dash AK (2002) Int J Pharm 241:293–299

    Article  CAS  PubMed  Google Scholar 

  10. Mohd P, Khan A, Farooqui M (2011) J Adv Sci Res 2:20–27

    Google Scholar 

  11. Pereira VA Jr, de Arruda I.N.Q., Stefani R (2015) Food Hydrocolloid 43:180–188

    Article  CAS  Google Scholar 

  12. Gutiérrez TJ, Guzmán R, Medina C, Famá L (2016) Int J Biol Macromol 82:395–403

    Article  CAS  PubMed  Google Scholar 

  13. Shahid M, Mohammad F (2013) J Clean Prod 53:310–331

    Article  CAS  Google Scholar 

  14. Sharma M, Li L, Celver J, Killian C, Kovoor A, Seeram NP (2009) J Agr Food Chem 58:3965–3969

    Article  CAS  Google Scholar 

  15. Adams LS, Zhang Y, Seeram NP, Heber D, Chen S (2010) Cancer Prev Res 3:108–113

    Article  CAS  Google Scholar 

  16. Barrajón-Catalán E, Fernández-Arroyo S, Saura D, Guillén E, Fernández-Gutiérrez A, Segura-Carretero A, Micol V (2010) Food Chem Toxicol 48:2273–2282

    Article  CAS  PubMed  Google Scholar 

  17. Kasimsetty SG, Bialonska D, Reddy MK, Ma G, Khan SI, Ferreira D (2010) J Agr Food Chem 58:2180–2187

    Article  CAS  Google Scholar 

  18. Sánchez T, Dufour D, Moreno IX, Ceballos H (2010) J Agr Food Chem 58:5093–5099

    Article  CAS  Google Scholar 

  19. da Silva Pinto M, de Carvalho JE, Lajolo FM, Genovese MI, Shetty K (2010) J Med Food 13:1027–1035

    Article  CAS  Google Scholar 

  20. Dell’Agli M, Galli GV, Bulgari M, Basilico N, Romeo S, Bhattacharya D, Bhattacharya D, Taramelli D, Bosisio E (2010) Malaria J 9:208

    Article  Google Scholar 

  21. Kafkas E, Koşar M, Türemiş N, Başer K.H.C (2006) Food Chem 97:732–736

    Article  CAS  Google Scholar 

  22. Olsson E, Hedenqvist MS, Johansson C, Järnström L (2013) Carbohyd Polym 94:765–772

    Article  CAS  Google Scholar 

  23. Menzel C, Olsson E, Plivelic TS, Andersson R, Johansson C, Kuktaite R, Jarnstrom L (2013) K Koch Carbohyd Polym 96:270–276

    Article  CAS  Google Scholar 

  24. Majzoobi M, Beparva P (2014) Food Chem 147:312–317

    Article  CAS  PubMed  Google Scholar 

  25. Wang S, Ren J, Li W, Sun R, Liu S (2014) Carbohyd Polym 103:94–99

    Article  CAS  Google Scholar 

  26. Altamirano-Fortoul R, Hernández-Muñoz P, Hernando I, Rosell CM (2015) J Food Eng 163:25–31

    Article  Google Scholar 

  27. Rutenberg MW, Solarek D (1984) Starch derivates: properties and uses. In: Whistler RL, Bemiller JN, Pachall EF (eds) Starch: chemistry and technology, 2nd edn, pp 312–388

  28. Avella M, De Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG (2005) Food Chem 93:467–474

    Article  CAS  Google Scholar 

  29. Fabra MJ, Busolo MA, Lopez-Rubio A, Lagaron JM (2013) Trends Food Sci Tech 31:79–87

    Article  CAS  Google Scholar 

  30. Majeed K, Jawaid M, Hassan A, Bakar AA, Khalil HA, Salema AA, Inuwa I (2013) Mater Design 46:391–410

    Article  CAS  Google Scholar 

  31. Yoshida CMP, Maciel VBV, Mendonça MED, Franco TT (2014) LWT—Food Sci Technol 55:83–89

    Article  CAS  Google Scholar 

  32. Al-Hassan AA, Norziah MH (2012) Food Hydrocolloid 26:108–117

    Article  CAS  Google Scholar 

  33. Romero-Bastida CA, Bello-Péreza LA, García MA, Martino MN, Solorza-Feria J, Zaritzky NE (2005) Carbohyd Polym 60:235–244

    Article  CAS  Google Scholar 

  34. Zamudio-Flores PB, Bello-Pérez LA, Vargas-Torres A, Hernández-Uribe JP, Romero-Bastida CA (2007) Agrociencia 41:837–844

    Google Scholar 

  35. Sothornvit R, Pitak N (2007) Food Res Int 40:365–370

    Article  CAS  Google Scholar 

  36. Pitak N, Rakshit SK (2011) LWT-Food Sci Technol 44:2310–2315

    Article  CAS  Google Scholar 

  37. Pelissari FM, Andrade-Mahecha MM, do Sobral A, Menegalli FC (2013) Food Hydrocolloid 30:681–690

    Article  CAS  Google Scholar 

  38. García-Tejeda YV, López-González C, Pérez-Orozco JP, Rendón-Villalobos R, Jiménez-Pérez A, Flores-Huicochea E, Solorza-Feria J, Bastida CA (2013) LWT-Food Sci Technol 54:447–455

    Article  CAS  Google Scholar 

  39. Loesecke HV (1950) Bananas. Interscience, New York, p 189

    Google Scholar 

  40. Pérez E, Bahnassey Y, Breene W (1993) Starch-Stärke 45:211–214

    Article  Google Scholar 

  41. Pacheco E (2001) Acta Científica Venezolana 52:278–282

    Google Scholar 

  42. Rivero AC (2008) Universidad Nacional de Colombia. Bogotá, Colombia

    Google Scholar 

  43. AACC (2003) Approved methods of the American Association of Cereal Chemists. Methods no. 44-15A, 30-10, 08-01, 46-13, 02-52, and 02-31. American Association of Cereal Chemists, St. Paul

    Google Scholar 

  44. Van Soest PU, Wine RH (1967) J Assoc Off Anal Chem 50:50–55

    Google Scholar 

  45. Pérez E, Gilbert O, Rolland-Sabaté A, Jiménez Y, Sánchez T, Giraldo A, Pontoire B, Guilois S, Lahon M-C, Reynes M, Dufour D (2010) J Agr Food Chem 59:263–273

    Article  CAS  Google Scholar 

  46. Pérez E, Rolland-Sabaté A, Dufour D, Guzmán R, Tapia M, Raymundez M, Ricci J, Guilois S, Pontoire B, Reynes M, Gilbert O (2013) Carbohyd Polym 98:650–658

    Article  CAS  Google Scholar 

  47. Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Method Enzymol 299:152–178

    Article  CAS  Google Scholar 

  48. Dewanto V, Wu X, Adom KK, Liu RH (2002) J Agr Food Chem 50:3010–3014

    Article  CAS  Google Scholar 

  49. Marier JR, Boulet M (1958) J Dairy Sci 41:1683–1692

    Article  CAS  Google Scholar 

  50. Hassimotto N.M.A., da Mota RV, Cordenunsi BR, Lajolo FM (2008) Food Sci Technol (Campinas) 28:702–708

    Article  Google Scholar 

  51. Gutiérrez TJ, Pérez E, Guzmán R, Tapia MS, Famá L (2014) J Polym Biopolym Phys Chem 2:1–5

    Google Scholar 

  52. Gutiérrez TJ, Tapia MS, Pérez E, Famá L (2015) Food Hydrocolloid 45:211–217

    Article  CAS  Google Scholar 

  53. Gutiérrez TJ, Tapia MS, Pérez E, Famá L (2015) Starch-Stärke 67:90–97

    Article  CAS  Google Scholar 

  54. Gontard N, Thibault R, Cuq B, Guilbert S (1996) J Agr Food Chem 44:1064–1069

    Article  CAS  Google Scholar 

  55. Klaushofer H, Berghofer E, Steyrer W (1978) Ernährung/Nutrition 2:51–55

    CAS  Google Scholar 

  56. Mei JQ, Zhou DN, Jin ZY, Xu XM, Chen HQ (2015) Food Chem 187:378–384

    Article  CAS  PubMed  Google Scholar 

  57. Kramer EO (1938) J Ind Eng Chem 30:1200–1203

    Article  Google Scholar 

  58. Huggins ML (1942) J Am Chem Soc 64:2716–2718

    Article  CAS  Google Scholar 

  59. Gutiérrez TJ, .González G (2016) Food Bioprocess Technol 9:1812–1824

    Article  CAS  Google Scholar 

  60. Gutiérrez TJ, González G (2017) Food Biophys 12:11–22

    Article  Google Scholar 

  61. Gutiérrez TJ, Alvarez VA (2017) React Funct Polym 112:33–44

    Article  CAS  Google Scholar 

  62. ASTM D882. pp 882–888

  63. Hermans PH, Weidinger A (1961) Macromol Chem Phys 44:24–36

    Article  Google Scholar 

  64. Chartoff RP (1981) In: Turi EA (ed) Thermal characterization of polymeric materials. vol 1, Academic Press, New York, pp. C3

    Google Scholar 

  65. Biliaredis CG, Lazaridou A, Arvanitoyannis I (1999) Carbohyd Polym 40:29–47

    Article  Google Scholar 

  66. ASTM D-1925 (1995) Standard Test Method for Yellowness Index of Plastics. American Society for Testing and Materials, Philadelphia

  67. Rincón AM, Tapia MS, Padilla FC (2003) Revista Facultad de Farmacia Universidad Central de Venezuela 66:73–78

    Google Scholar 

  68. Miller NJ, Rice-Evans CA (1997) Free Radical Res 26:195–199

    Article  CAS  Google Scholar 

  69. Pranoto Y, Salokhe VM, Rakshit SK (2005) Food Res Int 38:267–272

    Article  CAS  Google Scholar 

  70. Ponce AG, Roura SI, Valle CE, Moreira MR (2008) Postharvest Biol Tec 49:294–300

    Article  CAS  Google Scholar 

  71. Jay JM (1996) Modern food microbiology, 5th edn. Chapman & Hall Publishing, New York

    Book  Google Scholar 

  72. Pelissari FM, Andrade-Mahecha MM, Sobral PJDA, Menegalli FC (2012) Starch-Stärke 64:382–391

    Article  CAS  Google Scholar 

  73. Saura-Calixto F, Goñi I (2006) Food Chem 94:442–447

    Article  CAS  Google Scholar 

  74. Kaume L, Howard LR, Devareddy L (2011) J Agr Food Chem 60:5716–5727

    Article  CAS  Google Scholar 

  75. Rasper V (1982) Theoretical aspects of amilographology. In: Shuey WC, Tipples KH (eds) The amylograph handbook, AACC, St. Paul

    Google Scholar 

  76. Hoseney (1986) Principles of cereal science and technology. Published by the American Association of Cereal Chemists, Inc., St. Paul

    Google Scholar 

  77. Zhou M, Robards K, Glennie-Holmes M, Helliwel S (1998) Cereal Chem 75:273–281

    Article  CAS  Google Scholar 

  78. Harper JM, Tribelhorn RE (1992) In: Kokini JL, Ho CT, Karwe MV (eds) Food extrusion science and technology, Marcel Dekker Inc., New York, pp 653–667

    Google Scholar 

  79. da Mota RV, Lajolo FM, Cordenunsi BR, Ciacco C (2000) Starch-Stärke 52:63–68

    Article  Google Scholar 

  80. Yu S, Ma Y, Menager L, Sun DW (2012) Food Bioprocess Tech 5:626–637

    Article  CAS  Google Scholar 

  81. de la Torre-Gutiérrez L, Chel-Guerrero LA, Betancur-Ancona D (2008) Food Chem 106:1138–1144

    Article  CAS  Google Scholar 

  82. Pérez-Sira E (1997) Starch-Stärke 49:45–49

    Article  Google Scholar 

  83. Osundahunsi OF (2009) J Food Agric Environ 7:182–186

    CAS  Google Scholar 

  84. Kapelko-Żeberska M, Buksa K, Szumny A, Zięba T, Gryszkin A (2016) LWT-Food Sci Technol 69:334–341

    Article  CAS  Google Scholar 

  85. Yoo SH, Jane JL (2002) Carbohyd Polym 49:307–314

    Article  CAS  Google Scholar 

  86. Mizoguchi K, Ueda M (2008) Polym J 40:645

    Article  CAS  Google Scholar 

  87. Gutiérrez TJ, Morales NJ, Tapia MS, Pérez E, Famá L (2015) Procedia Mater Sci 8:304–310

    Article  CAS  Google Scholar 

  88. Pérez E, Segovia X, Tapia MA, Schroeder M (2012) J Cell Plast 48:545–556

    Article  CAS  Google Scholar 

  89. Sívoli L, Pérez E, Rodríguez P, De Abrisqueta A, Raymúndez MB (2005) Acta Microscópica 14:5–9

    Google Scholar 

  90. González P, Medina C, Famá L, Goyanes S (2016) Carbohyd Polym 138:66–74

    Article  CAS  Google Scholar 

  91. Cyras VP, Tolosa Zenklusen MC, Vazquez A (2006) J Appl Polym Sci 101:4313–4319

    Article  CAS  Google Scholar 

  92. Gutiérrez TJ, Morales NJ, Pérez E, Tapia MS, Famá L (2015) Food Packag Shelf Life 3:1–8

    Article  Google Scholar 

  93. Gutiérrez TJ, Suniaga J, Monsalve A, García NL (2016) Food Hydrocolloid 54:234–244

    Article  CAS  Google Scholar 

  94. Xu YX, Kim KM, Hanna MA, Nag D (2005) Ind Crop Prod 21:185–192

    Article  CAS  Google Scholar 

  95. Mathew S, Brahmakumar M, Abraham TE (2006) Biopolymers 82:176–187

    Article  CAS  PubMed  Google Scholar 

  96. Vicentini NM, Dupuy N, Leitzelman M, Cereda MP, Sobral PJA (2005) Spectrosc Lett 38:749–767

    Article  CAS  Google Scholar 

  97. Silva-Pereira MC, Teixeira JA, Pereira-Júnior VA, Stefani R (2015) LWT-Food Sci Technol 61:258–262

    Article  CAS  Google Scholar 

  98. Reis L.C.B., de Souza CO, da Silva J.B.A., Martins AC, Nunes IL, Druzian JI (2014) Food Bioprod Process 94:382–391

    Article  CAS  Google Scholar 

  99. Kizil R, Irudayaraj J, Seetharaman K (2002) J Agr Food Chem 50:3912–3918

    Article  CAS  Google Scholar 

  100. Famá L, Bittante A.M.B., Sobral PJ, Goyanes S, Gerschenson LN (2010) Mat Sci Eng C 30:853–859

    Article  CAS  Google Scholar 

  101. Rojas C (2008) Trabajo Especial de Grado, Universidad Central de Venezuela. Caracas, Venezuela

    Google Scholar 

  102. García NL, Famá L, Dufresne A, Aranguren M, Goyanes S (2009) Food Res Int 42:976–982

    Article  CAS  Google Scholar 

  103. Miles MJ, Morris VJ, Ring SG (1985) Carbohyd Res 135:257–269

    Article  CAS  Google Scholar 

  104. Noel TR, Ring SG, Whittman MA (1992) Food Sci Technol Today 6:159

    Google Scholar 

  105. Lourdin D, Valle GD, Colonna P (1995) Carbohyd Polym 27:261–270

    Article  CAS  Google Scholar 

  106. Alves VD, Mali S, Beleia A, Grossmann MVE (2007) J Food Eng 78:941–946

    Article  CAS  Google Scholar 

  107. Mina JH, Valadez A, Herrera-Franco PJ, Toledano T (2009) Ingeniería y Competitividad 11:95–106

    CAS  Google Scholar 

  108. Muscat D, Adhikari B, Adhikari R, Chaudhary DS (2012) J Food Eng 109:189–201

    Article  CAS  Google Scholar 

  109. Saavedra N, Algecira N (2010) NOVA-Publicación científica en ciencias biomédicas 8:171–182. ISSN:1794–2470

    Google Scholar 

  110. Zullo R, Iannace S (2009) Carbohyd Polym 77:376–383

    Article  CAS  Google Scholar 

  111. Rindlav A, Hulleman S.H.D., Gatenholm P (1997) Carbohyd Polym 34:25–30

    Article  CAS  Google Scholar 

  112. Angellier H, Molina-Boisseau S, Dole P, Dufresne A (2006) Biomacromolecules 7:531–539

    Article  CAS  PubMed  Google Scholar 

  113. Kristo E, Biliaderis CG (2007) Carbohyd Polym 68:146–158

    Article  CAS  Google Scholar 

  114. Tapia MS, Pérez E, Rodríguez P, Guzmán R, Ducamp-Collin MN, Tran T, Rolland-Sabaté A (2012) J Cell Plast 48:526–544

    Article  CAS  Google Scholar 

  115. Morales NJ, Candal R, Famá L, Goyanes S, Rubiolo GH (2015) Carbohyd Polym 127:291–299

    Article  CAS  Google Scholar 

  116. Zobel HF (1994) Starch granule structure. In: Alexander RJ, Zobel HF (eds) Developments in carbohydrate chemistry. The American Association of Cereal Chemists, St. Paul, pp 1–36

    Google Scholar 

  117. Farhat IA, Oguntona T, Neale RJ (1999) J Sci Food Agr 79:2105–2112

    Article  CAS  Google Scholar 

  118. Manzocco L, Nicoli MC, Labuza T (2003) Italian Food Technol XII:17–23

    Google Scholar 

  119. Zobel HF, French AD, Hinkle ME (1967) Biopolymers 5:837–845

    Article  CAS  Google Scholar 

  120. García MA, Martino MN, Zaritzky NE (2000) J Food Sci 65:941–944

    Article  Google Scholar 

  121. García MA, Martino MN, Zaritzky NE (2000) Starch-Stärke 52:118–124

    Article  Google Scholar 

  122. Mali S, Grossmann M.V.E., Garcia MA, Martino MN, Zaritzky NE (2002) Carbohyd Polym 50:379–386

    Article  CAS  Google Scholar 

  123. Mitrus M (2005) Int Agrophys 19:237–241

    Google Scholar 

  124. Bonilla J, Fortunati E, Atarés L, Chiralt A, Kenny JM (2014) Food Hydrocolloid 35:463–470

    Article  CAS  Google Scholar 

  125. Fakhouri FM, Fontes LCB, Gonçalves PVM, Milanez CR, Steel CJ, Collares-Queiroz FP (2007) Ciencia Tecnol Alime 27:369–375

    Article  CAS  Google Scholar 

  126. Wallach DFH (1996) US Patent No. 6495,368

  127. Chang-Bravo L, López-Córdoba A, Martino M (2014) React Funct Polym 85:11–19

    Article  CAS  Google Scholar 

  128. García-Ruiz A, Bartolomé B, Cueva C, Rodríguez-Bencomo JJ, Requena T, Martín-Álvarez PJ, Moreno-Arribas MV (2012) 6ª Reunión Red Bal, Tarragona. II. Bacterias Lácticas y Alimentos, p. 27

  129. Raybaudi-Massilia RM, Mosqueda-Melgar J, Martín-Belloso O (2008) Int J Food Microbiol 121:313–327

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to thank Dr. Mirian Carmona-Rodríguez, Dr. Judith Sánchez Bruguera, Dr. María B. Raymúndez, Dr. Aura Cova, Prof. Alicia Mariela Rincón and Prof. Edgar del Carpio.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomy J. Gutiérrez.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Appendix

Appendix

See Tables 4, 5, 6 and Fig. 8.

Table 4 Chemical composition on dry basis of the matrices used and blackberry pulp
Table 5 Water activity (a w) and color parameters of the starch and flour used
Table 6 Pasting properties of the starch and flour evaluated to 7% suspension
Fig. 8
figure 8

Optical micrographs with light polarized of: a native plantain starch and b pre-gelatinized plantain flour. At 50X of magnification

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez, T.J. Active and Intelligent Films Made from Starchy Sources/Blackberry Pulp. J Polym Environ 26, 2374–2391 (2018). https://doi.org/10.1007/s10924-017-1134-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1134-y

Keywords

Navigation