Skip to main content
Log in

Effect of Gamma Radiation on the Properties of Crosslinked Chitosan Nano-composite Film

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Chitosan nano-composite film crosslinked by citric acid and with glycerol as plasticizer and MgO as antibacterial agent was prepared by casting method. MgO nanoparticles were synthesized via calcination method in furnace at 500 °C for 4 h and characterized by X-ray diffraction and transmission electron microscope. The chitosan nano-composite film with composition chitosan/citric/glycerol/magnesium oxide (1 wt%:1 wt%:75 vol%:10 wt%) has high mechanical properties than other films. The effects of different irradiation doses on the mechanical, thermal and antibacterial activity were investigated. The tensile strength enhanced by increasing irradiation dose up to 10 kGy and the elongation negligible changed as irradiation dose increased. The thermal stability slightly increased up to dose 2.5 kGy then decreased with dose increment. The antimicrobial activity film was studied against white mulberry-borne bacterial pathogens either Gram positive or Gram negative bacteria and has positive impact of gamma irradiation on the antimicrobial activity. The use of the selected chitosan nano-composite film which irradiated by dose of 2.5 kGy and has magnesium oxide of average particle size 54.3 nm as new packaging materials found to improve storage quality and shelf-life of mulberry fruit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Vasile C, Kulshreshtha AK (2003) Handbook of polymer blends and composites, vol 4. Rapra Technology Ltd., Shrewsbury

    Google Scholar 

  2. Husseinsyah S, Azmin AN, Ismail H (2013) Effect of maleic anhydride-grafted-polyethylene (MAPE) and silane on properties of recycled polyethylene/chitosan biocomposites. Polym-Plast Technol Eng 52:168–174

    Article  CAS  Google Scholar 

  3. Cui Z, Beach ES, Anastas PT (2011) Modification of chitosan films with environmentally benign reagents for increased water resistance. Green Chem Lett Rev 4:35–40

    Article  CAS  Google Scholar 

  4. Shu XZ, Zhu KJ, Weihong S (2001) Novel pH-sensitive citrate cross-linked chitosan film for drug controlled release. Int J Pharm 212:19–28

    Article  CAS  PubMed  Google Scholar 

  5. Gawish SM, Abo El-Ola SM, Ramadan AM, Abou El-Kheir AA (2012) Used as a crosslinking agent for the grafting of chitosan onto woolen fabric. J Appl Polym Sci 123:3345–3353

    Article  CAS  Google Scholar 

  6. Sundrarajan M, Suresh J, Rajiv Gandhi R (2012) A comparative study on antibacterial properties of MgO nanoparticles prepared under different calcination temperature. Dig J Nanomater Biostruct 7:983–989

    Google Scholar 

  7. Awwad AM, Ahmad AL (2014) Biosynthesis, characterization, and optical properties of magnesium hydroxide and oxide nanoflakes using citrus limon leaf extract. Arab J Phys Chem 1:65–70

    Google Scholar 

  8. Abdel Moez A, Aly SS, Elshaer YH (2012) Effect of gamma radiation on low density polyethylene (LDPE) films: optical, dielectric and FTIR studies. Spectrochim Acta A 93:203–207

    Article  CAS  Google Scholar 

  9. Muzzarelli RAA (1996) Chitosan-based dietary foods. Carbohydr Polym 29:309–316

    Article  CAS  Google Scholar 

  10. Rosiak J, Ulanski P, Kucharska M, Dutkiewicz J, Judkiewicz L (1992) Radiation sterilization of chitosan sealant for vascular prostheses. J Radioanal Nucl Chem 1:87–96

    Article  Google Scholar 

  11. Desai KG, Jin H (2006) Study of gamma-irradiation effects on chitosan microparticles. Drug Deliv 13:39–50

    Article  CAS  PubMed  Google Scholar 

  12. Haldorai Y, Shim J-J (2014) An efficient removal of methyl orange dye from aqueous solution by adsorption onto chitosan/MgO composite: a novel reusable adsorbent. Appl Surf Sci 292:447–453

    Article  CAS  Google Scholar 

  13. Sibi S, Pragathiswaran C, Venkatesan S, Anthuvan BS, Kullagounder S (2016) Chitosan and reinforced chitosan films for the removal of Cr(VI) heavy metal from synthetic aqueous solution. Orient J Chem 32:671–680

    Article  CAS  Google Scholar 

  14. Patel MK, Ali MA, Agrawal MZafaryab,VV, Rizvi MMA, Ansari ZA, Ansari SG, Malhotra BD (2013) Biocompatible nanostructured magnesium oxide-chitosan platform for genosensing application. Biosens Bioelectron 45:181–188

    Article  CAS  PubMed  Google Scholar 

  15. Sanuja S, Agalya A, Umapathy MJ (2014) Studies on magnesium oxide reinforced chitosan bionanocomposite incorporated with clove oil for active food packaging application. Int J Polym Mater Polym Biomater 63:733–740

    Article  CAS  Google Scholar 

  16. Kojima Y, Kimura T, Nakagawa K, Asai A, Hasumi K, Oikawa S, Miyazawa T (2010) Effect of mulberry leaf extract rich in 1-deoxynojirimycin on blood lipid profiles in humans. J Clin Biochem Nutr 47:155–161

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lee SH, Jeong E, Paik S,-S, Jeon JH, Jung SW, Kim H-B, Kim M, M-H Chun, I-B Kim (2014). Cyanidin-3-glucoside extracted from mulberry fruit can reduce N-methyl-N-nitrosourea-induced retinal degeneration in rats. Curr Eye Res 39:79–87

    Article  CAS  PubMed  Google Scholar 

  18. Kim SB, Chang BY, Jo YH, Lee SH, Han SB, Hwang BY, Kim SY, MK Lee (2013) Macrophage activating activity of pyrrole alkaloids from Morus alba fruits. J Ethnopharmacol 145:393–396

    Article  CAS  PubMed  Google Scholar 

  19. Niidome T, Takahashi K, Goto Y, Goh S, Tanaka N, Kamei K, Ichida M, Hara S, Akaike A, Kihara T, Sugimoto H (2007) Mulberry leaf extract prevents amyloid beta-peptide fibril formation and neurotoxicity. Neuroreport Neurophysiol Basic Clin 18:813–816

    Google Scholar 

  20. Rashmi MM, Kiran P, Anuradar V (2012) Synthesis and characterization of oxazolidones with improved thermal stability. Adv Appl Sci Res 3:2553–2560

    Google Scholar 

  21. Oxoid manual (1982) The Oxoid manual of culture media, ingredients and other laboratory services, 5th edn. Oxoid limited, Hampshire

    Google Scholar 

  22. El-Bialy HA, Abou El-Nour SA (2015) Physical and chemical stress on Serratia marcescens and studies on prodigiosin pigment production. Ann Microbiol 65:59–68

    Article  CAS  Google Scholar 

  23. Vattem DA, Lin YT, Labbe RG, Shetty LK (2004) Phenolic antioxidant mobilization in cranberry pomace by solid-state bioprocessing using food grade fungus Lentinus edodes and effect on antimicrobial activity against selected food borne pathogens. Innov Food Sci Emerg Technol 5:81–86

    Article  CAS  Google Scholar 

  24. Chen Z, Zhu C, Han Z (2011) Effects of aqueous chlorine dioxide treatment on nutritional components and shelf-life of mulberry fruit (Morus alba L.). J Biosci Bioeng 111:675–681

    Article  CAS  PubMed  Google Scholar 

  25. Vatsha B, Tetyana P, Shumbula PM, Ngila JC, Sikhwivhilu LM (2013) Effects of precipitation temperature on nanoparticle surface area and antibacterial behaviour of Mg(OH)2 and MgO nanoparticles. J Biomater Nanobiotechnol 4:365–373

    Article  CAS  Google Scholar 

  26. Epure V, Griffon M, Pollet E, Avérous L (2011) Structure and properties of glycerol-plasticized chitosan obtained by mechanical kneading. Carbohydr Polym 83:947–952

    Article  CAS  Google Scholar 

  27. Cissé M, Montet D, Loiseau G, Ducamp-Collin M-N (2012) Influence of the concentrations of chitosan and glycerol on edible film properties showed by response surface methodology. J Polym Environ 20:830–837

    Article  CAS  Google Scholar 

  28. Othman SH (2014) Bio-nanocomposite materials for food packaging applications: types of biopolymer and nano-sized filler. Agric Agric Sci Procedia 2:296–303

    Article  Google Scholar 

  29. Yang F, Li X, Cheng M, Gong Y, Zhao N, Zhang X, Yang Y (2002) Performance modification of chitosan membranes induced by gamma irradiation. J Biomater Appl 16:216–226

    Article  Google Scholar 

  30. García MA, de la Paz N, Castro C, Rodríguez JL, Rapado M, Zuluaga R, Gañán P, Casariego A (2015) Effect of molecular weight reduction by gamma irradiation on the antioxidant capacity of chitosan. J Radiat Res Appl Sci 8:190–200

    Article  CAS  Google Scholar 

  31. Sánchez-González L, González-Martínez C, Chiralt A, Cháfer M (2010) Physical and antimicrobial properties of chitosan–tea tree essential oil composite films. J Food Eng 98:443–452

    Article  CAS  Google Scholar 

  32. Muzzarelli R, Filippini O, Tarsi R, Giovanetti E, Biagini G, Varaldo PE (1990) Antimicrobial properties of N-carboxybutyl chitosan. Antimicrob Agents Chemother 34:2019–2023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu H, Du YM, Wang XH, Sun LP (2004) Chitosan kills bacteria through cell membrane damage. Int J Food Microbiol 95:147–155

    Article  CAS  PubMed  Google Scholar 

  34. Raafat D, Sahl HG (2009) Chitosan and its antimicrobial potential—a critical literature survey. Microb Biotechnol 2:186–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yamamoto O, Ohira T, Alvarez K, Fukuda M (2010) Antibacterial characteristics of CaCO3–MgO composites. Mater Sci Eng B 173:208–212

    Article  CAS  Google Scholar 

  36. Tang Z-X, Lv B-F (2014) MgO nanoparticles as antibacterial agent: preparation and activity. Braz J Chem Eng 31:591–601

    Article  Google Scholar 

  37. Leung YH, Ng AMC, Xu X, Shen Z, Gethings LA, Wong MT, Chan C et al (2014) Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli. Small 10:1171–1183

    Article  CAS  PubMed  Google Scholar 

  38. Falguera V, Quintero JP, Jiménez A, Muñoz JA, Ibarz A (2011) Edible films and coatings: Structures, active functions and trends in their use. Trends Food Sci Technol 22:292–303

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Abdel Ghaffar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel Ghaffar, A.M., Ali, H.E., Nasef, S.M. et al. Effect of Gamma Radiation on the Properties of Crosslinked Chitosan Nano-composite Film. J Polym Environ 26, 3226–3236 (2018). https://doi.org/10.1007/s10924-018-1208-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-018-1208-5

Keywords

Navigation