Skip to main content
Log in

Microbial Degradation of UV-Pretreated Low-Density Polyethylene Films by Novel Polyethylene-Degrading Bacteria Isolated from Plastic-Dump Soil

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Eleven effective low-density polyethylene (LDPE)-degrading bacterial strains were isolated and identified from landfill soil containing large amounts of plastic materials. The isolates belonged to 8 genera, and included Pseudomonas (areroginosa and putida), Sphingobacterium (moltivorum), Delftia (tsuruhatansis), Stentrophomonas (humi and maltophilia), Ochrobacterum (oryzeae and humi), Micrococcus (luteus), Acinetobacter (pitti), and Citrobacter (amalonaticus). Abiotic degradation of LDPE films by artificial and natural ultraviolet (UV)-exposure was analyzed by FT-IR spectroscopy. LDPE films treated with UV-radiation were also inoculated with the isolates and biofilm production and LDPE degradation were measured. Surface changes to the LDPE induced by bacterial biofilm formation were visualized by Scanning Electron Microscopy. The most active bacterial isolate, IRN19, was able to degrade polyethylene film by 26.8 ± 3.04% gravimetric weight over 4 weeks. Analysis of 16S rRNA sequence of this isolate revealed 96.97% similarity in sequence to Acinetobacter pitti, which has not previously been identified as a polyethylene-degrading bacterium. Also, most the effective biofilm forming isolate, IRN11, displayed the highest cell mass production (6.29 ± 0.06 log cfu/cm2) after growth on LDPE films, showed 98.74% similarity to Sphingobacterium moltivourum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Emadian SM, Onat TT, Demirel B (2017) Biodegradation of bioplastics in natural environments. Waste Manag. https://doi.org/10.1016/j.wasman.2016.10.006

    Article  PubMed  Google Scholar 

  2. Harshvardhan K, Jha B (2013) Biodegradation of low-density polyethylene by marine bacteria from pelagic waters Arabian Sea, India. Mar Pollut Bull 77:100–106. https://doi.org/10.1016/j.marpolbul.2013.10.025

    Article  CAS  PubMed  Google Scholar 

  3. Wordwatch Institute (2015) Global plastic production rises, recycling lags. http://www.worldwatch.org/global-plastic-production-rises-recycling-lags-0

  4. Bergmann M (2015) Marine anthropogenic litter. Springer, Newyork. ISBN 978-3-319-16510-3

    Book  Google Scholar 

  5. Chiellini E, Corti A, D’Antone S (2007) Oxo-biodegradable full carbon backbone polymers e biodegradation behaviour of thermally oxidized polyethylene in an aqueous medium. Polym Degrad Stab 92:1378–1383. https://doi.org/10.1016/j.polymdegradstab.2007.03.007

    Article  CAS  Google Scholar 

  6. Ojeda T, Freitas A, Dalmolin E, Dal Pizzol M, Vignol L, Melnik J, Jacques R, Bento F, Camargo F (2009) Abiotic and biotic degradation of oxo-biodegradable foamed polystyrene. Polym Degrad Stab 94:2128–2133. https://doi.org/10.1016/j.polymdegradstab.2009.09.012

    Article  CAS  Google Scholar 

  7. Abrusci C, Pablos J, Corrales T, López-Marín J, Marín I, Catalina F (2011) Biodegradation of photo-degraded mulching films based on polyethylenes and stearates of calcium and iron as pro-oxidant additives. Int Biodeterior Biodegrad 65:451–459. https://doi.org/10.1016/j.ibiod.2010.10.012

    Article  CAS  Google Scholar 

  8. Abrusci C, Pablos J, Marín I, Espí E, Corrales T, Catalina F (2013) F, Comparative effect of metal stearates as pro-oxidant additives on bacterial biodegradation of thermal- and photo-degraded low density polyethylene mulching films. Int Biodeterior Biodegrad 83:25–32. https://doi.org/10.1016/j.ibiod.2013.04.002

    Article  CAS  Google Scholar 

  9. Tokiwa Y, Calabia BP, Ugwu CU, Aiba S (2009) Biodegradability of plastics. Int J Mol Sci 10:3722–3742. https://doi.org/10.3390/ijms10093722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265. https://doi.org/10.1016/j.biotechadv.2007.12.005

    Article  CAS  PubMed  Google Scholar 

  11. Muenmee S, Chiemchaisri W, Chiemchaisri C (2015) Microbial consortium involving biological methane oxidation in relation to the biodegradation of waste plastics in a solid waste disposal open dump site. Int Biodeterior Biodegrad 102:172–181. https://doi.org/10.1016/j.ibiod.2015.03.015

    Article  CAS  Google Scholar 

  12. Muenmee S, Chiemchaisri W, Chiemchaisri C (2016) Enhancement of biodegradation of plastic wastes via methane oxidation in semi-aerobic landfill. Int Biodeterior Biodegrad 113:244–255. https://doi.org/10.1016/j.ibiod.2016.03.016

    Article  CAS  Google Scholar 

  13. Veethahavyaa KS, Rajath BS, Noobiab S, Kumar B (2016) Biodegradation of low density polyethylene in aqueous media. Proced Environ Sci 35:709–713. https://doi.org/10.1016/j.proenv.2016.07.072

    Article  CAS  Google Scholar 

  14. Sahebnazar Z, Shojaosadati SA, Mohammad-Taheri M, Nosrati M (2010) Biodegradation of low-density polyethylene (LDPE) by isolated fungi in solid waste medium. Waste Manag 30:396–401. https://doi.org/10.1016/j.wasman.2009.09.027

    Article  CAS  Google Scholar 

  15. Sen SK, Raut S (2015) Microbial degradation of low density polyethylene (LDPE): a review. J Environ Chem Eng 3:462–473. https://doi.org/10.1016/j.jece.2015.01.003

    Article  CAS  Google Scholar 

  16. Thirunavukarasu K, Purushothaman S, Sridevi J, Aarthy M, Gowthaman MK, Nakajima-Kambe T, Kamini NR (2016) Degradation of poly(butylene succinate) and poly(butylenes succinate-co-butylene adipate) by a lipase from yeast Cryptococcus sp. grown on agro-industrial residues. Int Biodeterior Biodegrad 110:99–107. https://doi.org/10.1016/j.ibiod.2016.03.005

    Article  CAS  Google Scholar 

  17. Sawadogo A, Harmonie OC, Sawadogo JB, Aminata K, Traoré AS, Dianou D (2014) Isolation and characterization of hydrocarbon-degrading bacteria from wastewaters in Ouagadougou, Burkina Faso. J Environ Prot 5:1183–1196. https://doi.org/10.4236/jep.2014.512115

    Article  CAS  Google Scholar 

  18. Jeon HJ, Kim MN (2014) Degradation of linear low density polyethylene (LLDPE) exposed to UV-irradiation. Eur Polym J 52:146–153. https://doi.org/10.1016/j.eurpolymj.2014.01.007

    Article  CAS  Google Scholar 

  19. Vimala PP, Mathew L (2016) Biodegradation of polyethylene using Bacillus subtilis. Proced Technol 24:232–239. https://doi.org/10.1016/j.protcy.2016.05.031

    Article  Google Scholar 

  20. Jeon HJ, Kim MN (2015) Functional analysis of alkane hydroxylase system derived from Pseudomonas aeruginosa E7 for low molecular weight polyethylene biodegradation. Int Biodeterior Biodegrad 103:141–146. https://doi.org/10.1016/j.ibiod.2015.04.024

    Article  CAS  Google Scholar 

  21. Watanabea T, Suzuki K, Shinozaki Y, Yarimizua T, Yoshidaa S, Sameshima-Yamashitaa Y, Koitabashi M, Kitamoto HK (2015) A UV-induced mutant of Cryptococcus flavus GB-1 with increased production of a biodegradable plastic-degrading enzyme. Process Biochem 50:1718–1724. https://doi.org/10.1016/j.procbio.2015.07.005

    Article  CAS  Google Scholar 

  22. Yang Y, Chen J, Wu WM, Zhao J, Yanga J (2016) Characterization of a thermolabile poly(3-hydroxybutyrate) depolymerase from the marine bacterium Shewanella sp. J KCM-AJ-6,1α. Polym Degrad Stab 129:212–221. https://doi.org/10.1016/j.polymdegradstab.2016.04.022

    Article  CAS  Google Scholar 

  23. Lesley DL, Jenkins K, Cook A (1979) Microbial degradation of polyethylene glycols. J Appl Bacteriol 47:75–85. https://doi.org/10.1111/j.1365-2672.1979.tb01171.x

    Article  Google Scholar 

  24. Sung CC, Tachibana Y, Suzuki M, Hsieh WC, Kasuya KI (2016) Identification of a poly(3 hydroxybutyrate)-degrading bacterium isolated from coastal seawater in Japan as Shewanella sp. Polym Degrad Stab 129:268–274. https://doi.org/10.1016/j.polymdegradstab.2016.05.008

    Article  CAS  Google Scholar 

  25. Parmila R, Ramesh VK (2015) Potential biodegradation of low density polyethylene (LDPE) by Acinetobacter bumannii. Afr J Bacteriol Res 7:24–28. https://doi.org/10.5897/JBR2015.0152

    Article  CAS  Google Scholar 

  26. Chia KH, Nanthini J, Thottathil GP, Najimudin N, Hakim MH, Haris MR, Sudesh K (2016) Identification of new rubber-degrading bacterial strains from aged Latex. Polym Degrad stab 109:354–361. https://doi.org/10.1016/j.polymdegradstab.2014.07.027

    Article  CAS  Google Scholar 

  27. Binneru S, Sorensen OJ (1998) Gram characteristics determined on single cells and at the microcolony level of bacteria immobilized on polycarbonate membrane filters. J Microbiol Methods 31:185–192. https://doi.org/10.1016/S0167-7012(97)00102-4

    Article  Google Scholar 

  28. Kumari N, Vashishtha A, Sain S, Menghani E (2013) Isolation, identification and characterization of oil degrading bacteria isolated from the contaminated sites of Barmer, Rajasthan. Int J Biotechnol Bioeng Res 4:429–436

    Google Scholar 

  29. Gilan I, Hadar Y, Sivan A (2004) Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Appl Microbiol Biotechnol 65:97–104. https://doi.org/10.1007/s00253-004-1584-8

    Article  CAS  Google Scholar 

  30. Sudhakar M, Doble M, Sriyutha MP, Venkatesan R (2008) Marine microbe-mediated biodegradation of low- and high-density polyethylenes. Int Biodeterior Biodegrad 61:203–213

    Article  CAS  Google Scholar 

  31. Jopia P, Ruiz-Tagle N, Villagra M, Sossa K, Pantoja S, Rueda L, Urrutia-Briones H (2010) Biofilm growth kinetics of a monomethylamine producing Alphaproteobacteria strain isolated from an anaerobic reactor. Anaerobe 16:19–26. https://doi.org/10.1016/j.anaerobe.2009.04.007

    Article  CAS  PubMed  Google Scholar 

  32. Arkatkar A, Juwarkar AA, Bhaduri S, Uppara PV, Doble M (2010) Growth of Pseudomonas and Bacillus biofilms on pretreated polypropylene surface. Int Biodeterior Biodegrad 64:530–536. https://doi.org/10.1016/j.ibiod.2010.06.002

    Article  CAS  Google Scholar 

  33. Albertsson AC, Andersson SO, Karlsson S (1987) Mechanism of biodegradation of polyethylene. Polym Degrad Stab 18:73–87

    Article  CAS  Google Scholar 

  34. Guzik MW, Kenny ST, Duane GF, Casey E, Woods T, Ramesh PB, Nikodinovic-Runic J, Murray M, O’Connor KE (2014) Conversion of post consumer polyethylene to the biodegradable polymer polyhydroxyalkanoates. Appl Microbiol Biotechnol 98:4223–4232

    Article  CAS  PubMed  Google Scholar 

  35. R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

  36. Mehmood CT, Qazi IA, Hashmi I, Bhargava S, Deepa S (2016) Biodegradation of low density polyethylene (LDPE) modified with dye sensitized titania and starch blend using Stenotrophomonas pavanii. Int Biodeterior Biodegrad 113:276–286. https://doi.org/10.1016/j.ibiod.2016.01.025

    Article  CAS  Google Scholar 

  37. Kathiresan K (2003) Polythene and plastics-degrading microbes from the mangrove soil. Rev Biol Trop 51:629–633

    CAS  PubMed  Google Scholar 

  38. Yamada-Onodera K, Mukumoto H, Katsuyama Y, Saiganji A, Tani Y (2001) Degradation of polyethylene by a fungus, Penicillium simplicissimum YK. Polym Degrad Stab 72:323–327

    Article  CAS  Google Scholar 

  39. Lobelle D, Cunliffe M (2011) Early microbial biofilm formation on marine plastic debris. Mar Pollut Bull 62:197–200. https://doi.org/10.1016/j.marpolbul.2010.10.013

    Article  CAS  PubMed  Google Scholar 

  40. Hadad D, Geresh S, Sivan A (2005) Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J Appl Microbiol 98:1093–1100. https://doi.org/10.1111/j.1365-2672.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  41. Das MP, Kumar S (2013) Influence of cell surface hydrophobicity in colonization and biofilm formation on LDPE biodegradation. Int J Pharm Pharm Sci 4:690–694

    Google Scholar 

  42. Mor R, Sivan A (2008) Biofilm formation and partial biodegradation of polystyrene by the actinomycete Rhodococcus ruber. Biodegradation 19:851–858

    Article  CAS  PubMed  Google Scholar 

  43. Kawaia F, Watanabe M, Shibatac M, Yokoyamad S, Sudatec Y, Hayashid S (2004) Comparative study on biodegradability of polyethylenewax by bacteria and fungi. Polym Degrad Stab 86:105–114. https://doi.org/10.1016/j.polymdegradstab.2004.03.015

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Prof. David B. Levin from University of Manitoba for revising the MS and the “Research Center of Mashhad Islamic Council” for partial financial support of this work.

Funding

Funding was provided by Mashhad Islamic City Council Research Center (Grant No. 1310).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad B. Habibi-Najafi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montazer, Z., Habibi-Najafi, M.B., Mohebbi, M. et al. Microbial Degradation of UV-Pretreated Low-Density Polyethylene Films by Novel Polyethylene-Degrading Bacteria Isolated from Plastic-Dump Soil. J Polym Environ 26, 3613–3625 (2018). https://doi.org/10.1007/s10924-018-1245-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-018-1245-0

Keywords

Navigation