Skip to main content
Log in

Effect of Xylanase–Laccase Synergistic Pretreatment on Physical–Mechanical Properties of Environment-Friendly Self-bonded Bamboo Particleboards

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Diminishing wood supply and high formaldehyde emission from synthetic adhesive-bonded lignocellulose boards have become concerns. In this research, new adhesive-free boards made from xylanase–laccase-modified bamboo particles were developed. The bamboo particles were pretreated first with xylanase and then with laccase. The synergistic pretreatment was performed according to a Taguchi experiment that included six variables: xylanase treatment (enzyme concentration: 10, 20, 30 U/g; reaction pH: 8, 9, 10; reaction time: 30, 60, 90 min) and laccase treatment (enzyme concentration: 10, 20, 30 U/g; reaction pH: 2, 3, 4; reaction time: 30, 60, 90 min). The particles were hot-pressed to harvest the self-bonded boards, whose physical–mechanical properties were evaluated. The results showed that all six variables (except laccase reaction time) caused significant effects at 0.05 level on physical–mechanical properties of boards. The optimum pretreatment parameters were determined to be xylanase (20 U/g, pH 9, 60 min) and laccase (20 U/g, pH 4, 60 min). The optimized flexural strength, flexural modulus, internal bonding, and 2 h thickness swelling of boards met the highest requirements in Chinese national standard GB/T 4897 (2015) for particleboards. The performance of proposed boards was also better than that of reported self-bonded bamboo particleboards with only a laccase pretreatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhu X, Han S, Liu Y, Chen G (2017) Effects of laccase incubated from white rot fungi on the mechanical properties of fiberboard. J For Res 28:1293–1300. https://doi.org/10.1007/s11676-017-0398-3

    Article  CAS  Google Scholar 

  2. Song W, Wei W, Ren C, Zhang S (2017) Effect of heat treatment or alkali treatment of veneers on the mechanical properties of eucalyptus veneer/polyethylene film plywood composites. BioResources 12:8683–8703. https://doi.org/10.15376/biores.12.4.8683-8703

    Article  CAS  Google Scholar 

  3. Liu CC, Wang YN, Fu LM, Huang YH (2018) Microfluidic paper-based chip platform for formaldehyde concentration detection. Chem Eng J 332:695–701. https://doi.org/10.1016/j.cej.2017.09.128

    Article  CAS  Google Scholar 

  4. Wang B, Li DL, Chen TY, Qin ZY, Peng WX, Wen JL (2017) Understanding the mechanism of self-bonding of bamboo binderless boards: investigating the structural changes of lignin macromolecule during the molding pressing process. BioResources 12:514–532. https://doi.org/10.15376/biores.12.1.514-532

    Article  CAS  Google Scholar 

  5. Ramos D, Salvadó J, Fernando F (2017) High mechanical performance boards made from fibers of Arundo donax without added adhesives. BioResources 12:5383–5394. https://doi.org/10.15376/biores.12.3.5383-5394

    Article  CAS  Google Scholar 

  6. Alvarez C, Rojas OJ, Rojano B, Ganán P (2015) Development of self-bonded fiberboards from fiber of leaf plantain: effect of water and organic extractives removal. BioResources 10:672–683. https://doi.org/10.15376/biores.10.1.672-683

    Article  Google Scholar 

  7. Euring M, Kirsch A, Kharazipour A (2016) Pre-pressing and pre-heating via hot-air/hot-steam process for the production of binderless medium-density fiberboards. BioResources 11:6613–6624. https://doi.org/10.15376/biores.11.3.6613-6624

    Article  CAS  Google Scholar 

  8. Ferrández-García A, Ferrández-Villena M, Ferrández-García CE, García-Ortuño T, Ferrández-García MT (2017) Potential use of Phoenix canariensis biomass in binderless particleboards at low temperature and pressure. BioResources 12:6698–6712. https://doi.org/10.15376/biores.12.3.6698-6712

    Article  CAS  Google Scholar 

  9. Almusawi A, Lachat R, Atcholi KE, Gomes S (2016) Proposal of manufacturing and characterization test of binderless hemp shive composite. Int Biodeter Biodegr 115:302–307. https://doi.org/10.1016/j.ibiod.2016.09.011

    Article  CAS  Google Scholar 

  10. Ferrandez-Garcia CC, Garcia-Ortuño T, Ferrandez-Garcia MT, Ferrandez-Villena M, García CEF (2017) Fire-resistance, physical, and mechanical characterization of binderless rice straw particleboards. BioResources 12:8539–8549. https://doi.org/10.15376/biores.12.4.8539-8549

    Article  CAS  Google Scholar 

  11. Kurokochi Y, Sato M (2015) Effect of surface structure, wax and silica on the properties of binderless board made from rice straw. Ind Crops Prod 77:949–953. https://doi.org/10.1016/j.indcrop.2015.10.007

    Article  CAS  Google Scholar 

  12. Kurokochi Y, Sato M (2015) Properties of binderless board made from rice straw: the morphological effect of particles. Ind Crops Prod 69:55–59. https://doi.org/10.1016/j.indcrop.2015.01.044

    Article  CAS  Google Scholar 

  13. Kurokochi Y, Sato M (2015) Effect of steam explosion and grinding on binderless board made from rice straw. Wood Res Slovakia 60:791–799

    CAS  Google Scholar 

  14. Huang L, Xia P, Liu Y, Fu Y, Jiang Y, Liu S, Wang X (2015) Production of biodegradable board using rape straw and analysis of mechanical properties. BioResources 11:772–785. https://doi.org/10.15376/biores.11.1.772-785

    Article  CAS  Google Scholar 

  15. Pesenti H, Torres M, Oliveira P, Gacitua W, Leoni M (2017) Exploring Ulex europaeus to produce nontoxic binderless fibreboard. BioResources 12:2660–2672. https://doi.org/10.15376/biores.12.2.2660-2672

    Article  CAS  Google Scholar 

  16. Theng D, Arbat G, Delgado-Aguilar M, Vilaseca F, Ngo B, Mutjé P (2015) All-lignocellulosic fiberboard from corn biomass and cellulose nanofibers. Ind Crops Prod 76:166–173. https://doi.org/10.1016/j.indcrop.2015.06.046

    Article  CAS  Google Scholar 

  17. Uitterhaegen E, Labonne L, Merah O, Talou T, Ballas S, Véronèse T, Evon P (2017) Optimization of thermopressing conditions for the production of binderless boards from a coriander twin-screw extrusion cake. J Appl Polym Sci 134:44650. https://doi.org/10.1002/app.44650

    Article  CAS  Google Scholar 

  18. Uitterhaegen E, Labonne L, Merah O, Talou T, Ballas S, Véronèse T, Evon P (2017) Impact of thermomechanical fiber pre-treatment using twin-screw extrusion on the production and properties of renewable binderless coriander fiberboards. Int J Mol Sci 18:1539. https://doi.org/10.3390/ijms18071539

    Article  PubMed Central  Google Scholar 

  19. Zhang D, Zhang A, Xue L (2015) A review of preparation of binderless fiberboards and its self-bonding mechanism. Wood Sci Technol 49:661–679. https://doi.org/10.1007/s00226-015-0728-6

    Article  CAS  Google Scholar 

  20. Nasir M, Hashim R, Sulaiman O, Nordin NA, Lamaming J, Asim M (2015) Laccase, an emerging tool to fabricate green composites: A review. BioResources 10:6262–6284. https://doi.org/10.15376/biores.10.3.6262-6284

    Article  CAS  Google Scholar 

  21. Nasir M, Gupta A, Beg MDH, Chua GK, Jawaid M, Kumar A, Khan TA (2013) Fabricating eco-friendly binderless fiberboard from laccase-treated rubber wood fiber. BioResources 8:3599–3608. https://doi.org/10.15376/biores.8.3.3599-3608

    Article  Google Scholar 

  22. Álvarez C, Rojano B, Almaza O, Rojas OJ, Gañán P (2011) Self-bonding boards from plantain fiber bundles after enzymatic treatment: adhesion improvement of lignocellulosic products by enzymatic pre-treatment. J Polym Environ 19:182–188. https://doi.org/10.1007/s10924-010-0260-6

    Article  CAS  Google Scholar 

  23. Felby C, Thygesen LG, Sanadi A, Barsberg S (2004) Native lignin for bonding of fiber boards—evaluation of bonding mechanisms in boards made from laccase-treated fibers of beech (Fagus sylvatica). Ind Crops Prod 20:181–189. https://doi.org/10.1016/j.indcrop.2004.04.020

    Article  CAS  Google Scholar 

  24. Wang J, Xu K, Shen W, Zhou D, Zhong X, Cui G, Jin C (2008) Technology parameters for particleboard made from laccase-treated bamboo particle. J Northeast For Univ 36:21–22. https://doi.org/10.13759/j.cnki.dlxb.2008.12.009

    Article  CAS  Google Scholar 

  25. Yang Z, Song W, Cao Y, Wang C, Hu X, Yang Y, Zhang S (2017) The effect of laccase pretreatment conditions on the mechanical properties of binderless fiberboards with wheat straw. BioResources 12:3707–3719. https://doi.org/10.15376/biores.12.2.3707-3719

    Article  CAS  Google Scholar 

  26. Euring M, Kirsch A, Kharazipour A (2015) Hot-air/hot-steam process for the production of laccase-mediator-system bound wood fiber insulation boards. BioResources 10:3541–3552. https://doi.org/10.15376/biores.10.2.3541-3552

    Article  CAS  Google Scholar 

  27. Martín-Sampedro R, Rodríguez A, Requejo A, Eugenio ME (2012) Improvement of TCF bleaching of olive tree pruning residue pulp by addition of a laccase and/or xylanase pre-treatment. BioResources 7:1488–1503. https://doi.org/10.15376/biores.7.2.1488-1503

    Article  Google Scholar 

  28. Lian HL, You JX, Huang YN, Li ZZ (2012) Effect of refining on delignification with a laccase/xylanase treatment. BioResources 7:5268–5278. https://doi.org/10.15376/biores.7.4.5268-5278

    Article  Google Scholar 

  29. Lian HL, You JX, Lian ZN (2012) Effect of prior mechanical refining on biobleaching of wheat straw pulp with laccase/xylanase treatment. BioResources 7:3113–3124. https://doi.org/10.15376/biores.7.3.3113-3124

    Article  Google Scholar 

  30. Thakur VV, Jain RK, Mathur RM (2012) Studies on xylanase and laccase enzymatic prebleaching to reduce chlorine-based chemicals during CEH and ECF bleaching. BioResources 7:2220–2235. https://doi.org/10.15376/biores.7.2.2220-2235

    Article  CAS  Google Scholar 

  31. Zhou H, Qiu X, Yang D, Xie S (2016) Laccase and xylanase incubation enhanced the sulfomethylation reactivity of alkali lignin. ACS Sustain Chem Eng 4:1248–1254. https://doi.org/10.1021/acssuschemeng.5b01291

    Article  CAS  Google Scholar 

  32. Wu C, Zhou S, Li R, Wang D, Zhao C (2015) Reactivity improvement of bamboo dissolving pulp by xylanase modification. BioResources 10:4970–4977. https://doi.org/10.15376/biores.10.3.4970-4977

    Article  CAS  Google Scholar 

  33. Xu G, Wang X, Hu J (2013) Biobleaching of wheat straw pulp using laccase and xylanase. BioResources 8:3181–3188. https://doi.org/10.15376/biores.8.3.3181-3188

    Article  Google Scholar 

  34. Chandra RP, Ragauskas AJ (2005) Modification of high-lignin kraft pulps with laccase. Part 2. Xylanase-enhanced strength benefits. Biotechnol Progr 21:1302–1306. https://doi.org/10.1021/bp050093u

    Article  CAS  Google Scholar 

  35. Ji X, Chen J, Wang Q, Tian Z, Yang G, Liu S (2015) Boosting oxygen delignification of poplar kraft pulp by xylanase pretreatment. BioResources 10:2518–2525. https://doi.org/10.15376/biores.10.2.2518-2525

    Article  CAS  Google Scholar 

  36. Gan T, Sun J, Meng W, Song L, Zhang Y (2013) Electrochemical sensor based on graphene and mesoporous TiO2 for the simultaneous determination of trace colourants in food. Food Chem 141:3731–3737. https://doi.org/10.1016/j.foodchem.2013.06.084

    Article  CAS  PubMed  Google Scholar 

  37. Yuan J, He YZ, Guo ZW, Gao HF, Chen FB, Li LZ, Li YY, Zhang LY (2017) Utilization of sweet sorghum juice for efficient 2,3-butanediol production by Serratia marcescens H30. Bioresources 12:4926–4942. https://doi.org/10.15376/biores.12.3.4926-4942

    Article  CAS  Google Scholar 

  38. GB/T 4897 (2015) Particleboard (ISO 16893-2, 2010. Wood-based panels—particleboard—Part 2: requirements, MOD). Standardization Administration of China, Beijing

    Google Scholar 

  39. ISO 16893-2 (2010) Wood-based panels—particleboard—Part 2: requirements. International Organization for Standardization, Geneva

    Google Scholar 

  40. Shan T, Wang X, Fu X, Meng J, Sun W, Wang A, Liu Y, Zhou L (2014) Optimization of extraction process for ustiloxins A and B from rice false smut balls using an orthogonal array design. Afr J Biotechnol 13:3912–3918. https://doi.org/10.5987/AJB.2013.13112

    Article  CAS  Google Scholar 

  41. Ishmael UC, Shah SR, Palliah JV, Farida Asras MF, Ahmad SSNW, Ayodele VB (2016) Statistical modeling and optimization of enzymatic pretreatment of empty fruit bunches with laccase enzyme. Bioresources 11:5013–5032. https://doi.org/10.15376/biores.11.2.5013-5032

    Article  CAS  Google Scholar 

  42. Shah SR, Ishmael UC, Palliah JV, Asras MFF (2016) Optimization of the enzymatic saccharification process of empty fruit bunch pretreated with laccase enzyme. Bioresources 11:5138–5154. https://doi.org/10.15376/biores.11.2.5138-5154

    Article  CAS  Google Scholar 

  43. Wolfenden R, Snider M, Ridgway C, Miller B (1999) The temperature dependence of enzyme rate enhancements. J Am Chem Soc 121:7419–7420. https://doi.org/10.1021/ja991280p

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (31670571), Beijing Natural Science Foundation (6162019), National Key R & D Program of China (2017YFD0600804), and Co-built Foundation with Zhejiang Province “R & D on Natural Fiber Composites and Environmentally Friendly Adhesives” (CZXC201410). The authors are also grateful for the technical support from the Zhejiang Chengzhu Advanced Material Technology Co. Ltd. and Mr. Zaihua Shen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuangbao Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, W., Zhang, K., Chen, Z. et al. Effect of Xylanase–Laccase Synergistic Pretreatment on Physical–Mechanical Properties of Environment-Friendly Self-bonded Bamboo Particleboards. J Polym Environ 26, 4019–4033 (2018). https://doi.org/10.1007/s10924-018-1275-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-018-1275-7

Keywords

Navigation