Skip to main content
Log in

Influence of Cellulose Nanocrystal on the Cryogenic Mechanical Behavior and Thermal Conductivity of Polyurethane Composite

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Cellulose nanocrystals (CNC) have been used as reinforcement in polymer nanocomposites to improve their mechanical and thermal properties. In this study, we synthesized CNC-reinforced polyurethane foams (CNC-PUF), which are the most important component of liquefied natural gas and liquefied petroleum gas insulation systems, using various CNC loadings. The temperature-dependent mechanical and thermal characteristics of the CNC-PUF samples were investigated. In addition, the microstructural and X-ray diffraction investigations of the composite samples were performed. It was observed that the thermal and mechanical characteristics of the CNC-PUF sample with 0.6 wt% cellulose nanocrystals were superior to those of neat PUF under room and cryogenic temperatures. These properties showed a significant dependence on CNC loading, temperature, and foam density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hiroshi T, Hirotomo O, Toshinori I, Satoshi M (2013) Mitsubishi Heavy Ind Tech Rev 50:12

    Google Scholar 

  2. Michale S (2011) Szycher’s handbook of polyurethanes. CRC Press Taylor & Francis Group, Boca Raton, p 37

    Google Scholar 

  3. Irfan MH (1998) Chemistry and technology of thermosetting polymers in construction applications. Springer, Berlin, p 123

    Book  Google Scholar 

  4. Estravís S, Tirado-Mediavilla J, Santiago-Calvo M, Ruiz-Herrero JL, Villafañe F, Rodríguez-Pérez M (2016) Eur Polym J 80:1

    Article  Google Scholar 

  5. Taheri S, Sadeghi GMM (2015) Appl Clay Sci 114:430

    Article  CAS  Google Scholar 

  6. Liu TX, Huang S (2017) Properties and applications of polymer nanocomposites. Springer, Berlin, p 37

    Google Scholar 

  7. Glicksman LR (1994) Low density cellular plastics. Springer, Dordrecht, p 104

    Book  Google Scholar 

  8. Singh SN (2002) Blowing agents for polyurethane foams. Rapra Technology, Shrewsbury, p 1

    Google Scholar 

  9. Saha MC, Kabir ME, Jeelani S (2008) Mater Sci Eng A 479:213

    Article  Google Scholar 

  10. Blanco A, Monte MC, Campano C, Balea A, Merayo N, Negro C (2018) Handbook of nanomaterials for industrial applications. Elsevier Inc, Amsterdam, p 74

    Book  Google Scholar 

  11. Nasir M, Hashim R, Sulaiman O, Asim M (2017) Cellulose-reinforced nanofibre composites production, properties and applications. Elsevier Ltd, Amsterdam, p 261

    Google Scholar 

  12. Zhu H, Li Y, Fang Z, Xu J, Cao F, Wan J, Preston C, Yang B, Hu L (2014) ACS Nano 8:3606

    Article  CAS  Google Scholar 

  13. Uetani K, Hatori K (2017) Sci Technol Adv Mater 8:877

    Article  Google Scholar 

  14. Septevani AA, Evans DAC, Annamalai PK, Martin DJ (2017) Ind Crops Prod 107:114

    Article  CAS  Google Scholar 

  15. Li Y, Ren HF, Ragauskas AJ (2010) Nano-Micro Lett 2:89

    Article  CAS  Google Scholar 

  16. Lee JH, Park SH, Kim SH (2017) Macromol Res 22:424

    Article  Google Scholar 

  17. Linul E, Marsavina L, Voiconi T, Sadowski T (2013) J Phys Conf Ser 451:1

    Article  Google Scholar 

  18. Park SB, Choi SW, Kim JH, Bang CS, Lee JM (2016) Compos Part B Eng 93:317

    Article  CAS  Google Scholar 

  19. Segal L, Creely JJ, Martin AE, Conrad CM (1959) Text Res J 29:786

    Article  CAS  Google Scholar 

  20. Lu P, Hsieh YL (2012) Carbohydr Polym 87:564

    Article  CAS  Google Scholar 

  21. Vanderfleet OM, Osorio DA, Cranston ED (2018) Philos Trans R Soc A Math Phys Eng Sci 376:1

    Article  Google Scholar 

  22. Marett J, Aning A, Foster EJ (2017) Ind Crops Prod 109:869

    Article  CAS  Google Scholar 

  23. Lee C, Dazen K, Kafle K, Moore A, David KJ, Park S, Kim SH (2016) Cellulose chemistry and properties: fibers, nanocelluloses and advanced materials. Springer, Berlin, p 115

    Google Scholar 

  24. Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Ståhl K (2005) Cellulose 12:563

    Article  CAS  Google Scholar 

  25. Schuetz MA, Glicksman LR (1984) J Cell Plast 20:114

    Article  CAS  Google Scholar 

  26. Yuri K, Tsuguyuki S, Akira I (2014) Angew Chem Int Ed 53:10394

    Article  Google Scholar 

  27. Schilling SL (2006) HFC 245fa blown polyurethane foams with lower thermal conductivity. Bayer Material Science, Pittsburgh, p 234

    Google Scholar 

  28. Thomas H (2016) Cellulose chemistry and properties: fibers, nanocelluloses and advanced materials. Springer, Berlin, p 1

    Google Scholar 

  29. Gibson LJ, Ashby MF (1997) Cellular solids structure and properties. Cambridge University Press, Cambridge, p 175

    Book  Google Scholar 

  30. Mane JV, Chandra S, Sharma S, Ali H, Chavan VM, Manjunath BS, Patel RJ (2017) Procedia Eng 173:726

    Article  Google Scholar 

  31. Park SB, Lee CS, Choi SW, Kim JH, Bang CS, Lee JM (2016) Compos Struct 136:258

    Article  Google Scholar 

  32. Fabrice SM, Laurent C, Calaillé JY, Emanuelle C (2006) Compos Sci Technol 66:2700

    Article  Google Scholar 

  33. Dorris SE, Kumarakrishnan S (1970) J Appl Polym Sci 14:1913

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the R&D Platform Establishment of Eco-Friendly Hydrogen Propulsion Ship Program (No. 20006644) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea). This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Ministry of Science and ICT (MSIT) (No. 2018R1A2B6007403).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Myung Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, V.H., Kim, JD., Kim, JH. et al. Influence of Cellulose Nanocrystal on the Cryogenic Mechanical Behavior and Thermal Conductivity of Polyurethane Composite. J Polym Environ 28, 1169–1179 (2020). https://doi.org/10.1007/s10924-020-01673-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01673-3

Keywords

Navigation