Skip to main content
Log in

Interpretation of transit compartments pharmacodynamic models as lifespan based indirect response models

  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Transit compartments (TC) models are used to describe pharmacodynamic responses that involve drug action on cells undergoing differentiation and maturation. Such pharmacodynamic systems can also be described by lifespan based indirect response (LIDR) models. The purpose of this report is to investigate conditions under which the transit compartments models can be considered a special case of LIDR models. An integral representation of a solution to TC model has been used to determine the lifespan distribution for cell population described by this model. The distribution served as a basis for definition of new LIDRE (lifespan based indirect response with an effect on the lifespan distribution) models. Time courses of responses described by both types of models were simulated for a monoexponential pharmacokinetic function. The limit response was calculated as the number of transit compartments approached infinity. The difference between the limit response and TC responses were evaluated by computer simulations using MATLAB 7.7. TC models are a special case of LIDR models with the lifespan distribution described by the gamma function. If drug affects only the production of cells, then the cell lifespan distribution is time invariant. In this case an increase in the number of compartments results in a basic LIDR model with a point lifespan distribution. When the drug inhibits or stimulates cell aging, the cell lifespan distribution becomes time dependent revealing a new mechanism for drug effect on the gamma probability density function. The TC model with a large number of transit compartments converges to an LIDRE model. The limit LIDR models are approximated by the TC models when the number of compartments is at least 5. A moderate improvement in the approximation is observed if this number exceeds 20. The lifespan distribution for a cell population described by a TC model is described by the gamma probability density function. A drug affects this distribution only if it stimulates or inhibits the rate of cell maturation. If the number of transit compartments increases, then the TC model converges to a new type of LIDR model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Friberg LE, Karlsson MO (2003) Mechanistic models for myelosuppression. Invest New Drugs 21:183–194

    Article  PubMed  CAS  Google Scholar 

  2. Harker LA, Roskos LK, Marzec UM, Carter RA, Cherry JK, Sundell B, Cheung EL, Terry D, Sheridan W (2000) Effects of megakaryocyte growth and development factor on platelet production, platelet life span, and platelet function in healthy human volunteers. Blood 95:2514–2522

    PubMed  CAS  Google Scholar 

  3. Friberg LE, Henningsson A, Maas H, Nguyen L, Karlsson MO (2002) Model of chemotherapy-induced myelosuppression with parameter consistency across drugs. J Clin Oncol 20:4713–4721

    Article  PubMed  Google Scholar 

  4. Roskos LK, Lum P, Lockbaum P, Schwab G, Yang B-B (2006) Pharmacokinetic/pharmacodynamic modeling of pegfilgrastim in healthy subjects. J Clin Pharmacol 46:747–757

    Article  PubMed  CAS  Google Scholar 

  5. Perez-Ruixo JJ, Krzyzanski W, Hing J (2008) Pharmacodynamic analysis of recombinant human erythropoietin effect on reticulocyte production rate and age distribution in healthy subjects. Clin Pharmacokinet 47:399–415

    Article  PubMed  CAS  Google Scholar 

  6. Krzyzanski W, Ramakrishnan R, Jusko WJ (1999) Basic pharmacodynamic models for agents that alter production of natural cells. J Pharmacokinet Biopharm 21:457–478

    Google Scholar 

  7. Uehlinger DE, Gotch FA, Sheiner LB (1992) A pharmacodynamic model of erythropoietin therapy for uremic anemia. Clin Pharmacol Ther 51:76–89

    Article  PubMed  CAS  Google Scholar 

  8. Chapel SH, Veng-Pedersen P, Schmidt RL, Widness JA (2000) A pharmacodynamic analysis of erythropoietin-stimulated reticulocyte response in phlebotomized sheep. J Pharmacol Exp Ther 295:346–351

    PubMed  CAS  Google Scholar 

  9. Krzyzanski W, Woo S, Jusko WJ (2006) Pharmacodynamic models for agents that alter production of natural cells with various distributions of lifespans. J Pharmacokinet Pharmacodyn 33:125–165

    Article  PubMed  CAS  Google Scholar 

  10. Freise KJ, Widness JA, Schmidt RL, Veng-Pedersen P (2008) Modeling time variant distributions of cellular lifespans: increase in circulating reticulocyte lifespans following double phlebotomies in sheep. J Pharmacokinet Pharmacodyn 35:285–324

    Article  PubMed  Google Scholar 

  11. Freise KJ, Widness JA, Schmidt RL, Veng-Pedersen P (2008) Pharmacodynamic modeling of the effect of changes in the environment on cellular lifespan and response. J Pharmacokinet Pharmacodyn 35:527–552

    Article  PubMed  Google Scholar 

  12. Krzyzanski W, Perez-Ruixo JJ, Vermeulen A (2008) Basic pharmacodynamic models for agents that alter the lifespan distribution of natural cells. J Pharmacokinet Pharmacodyn 35:349–377

    Article  PubMed  CAS  Google Scholar 

  13. Krzyzanski W, Jusko WJ (2002) Multiple-pool cell lifespan model of hematologic effects of anticancer agents. J Pharmacokinet Pharmacodyn 29:311–337

    Article  PubMed  CAS  Google Scholar 

  14. Mager DE, Jusko WJ (2001) Pharmacodynamic modeling of time-dependent transduction systems. Clin Pharmacol Ther 70:210–216

    Article  PubMed  CAS  Google Scholar 

  15. Sun YN, Jusko WJ (1998) Transit compartments versus gamma distribution function to model signal transduction processes in pharmacodynamics. J Pharm Sci 87:732–737

    Article  PubMed  CAS  Google Scholar 

  16. Murphy EA, Francis ME (1969) The estimation of blood platelet survival. I. General principles of the study of cell survival. Thrombos Diath Haemorrh (Stuttg) 22:281–295

    CAS  Google Scholar 

  17. Murphy EA, Francis ME (1971) The estimation of blood platelet survival. II. The multiple hit model. Thrombos Diath Haemorrh (Stuttg) 25:53–80

    CAS  Google Scholar 

  18. Dayneka NL, Garg V, Jusko WJ (1993) Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm 21:457–478

    Article  PubMed  CAS  Google Scholar 

  19. Rudin W (1973) Functional analysis. McGraw-Hill, Boston, p 157

    Google Scholar 

  20. Simeoni M, Magni P, Cammia C, De Nicolao G, Croci V, Pesenti E, Germani M, Poggesi I, Rocchetti M (2004) Predictive pharmacokinetic-pharmacodynamic modeling of tumor growth kinetics in xenograft models after administration of anticancer agents. Cancer Res 64:1094–1101

    Article  PubMed  CAS  Google Scholar 

  21. Zelen M, Severo NC (1972) Probability functions. In: Abramowitz M, Stegun I (eds) Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover Publications, New York

    Google Scholar 

  22. Davis PJ (1972) Gamma function and related functions. In: Abramowitz M, Stegun I (eds) Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover Publications, New York

    Google Scholar 

  23. Wiczling P, Krzyzanski W (2008) Flow cytometric assessment of homeostatic aging of reticulocytes in rats. Exp Hematol 36:112–127

    Article  Google Scholar 

  24. Hunt RA (1994) Calculus. HarperCollins College Publishers, New York

    Google Scholar 

  25. Rudin W (1987) Real and complex analysis. McGraw-Hill, Boston, p 26

    Google Scholar 

  26. Walte K, Gabrilove J, Bronchud MH, Platzer E, Morstyn G (1996) Filgrastim (r-metHuG-CSF): the first 10 years. Blood 88:1907–1929

    Google Scholar 

  27. Wiczling P, Ait-Oudhia S, Krzyzanski W (2009) Flow cytometric analysis of reticulocyte maturation after erythropoietin administration in rats. Cytometry A 75A:584–592

    Article  CAS  Google Scholar 

  28. Polenakovic M, Sikole A (1996) Is erythropoietin a survival factor for red blood cells? J Am Soc Nephrol 7:1178–1182

    PubMed  CAS  Google Scholar 

  29. Krzyzanski W, Wiczling P, Lowe P, Pigeolet E, Fink M, Berghout A, Balser S (2010) Population modeling of filgrastim PK-PD in healthy adults following intravenous and subcutaneous administrations. J Clin Pharmacol 50:101S–112S

    Article  PubMed  CAS  Google Scholar 

  30. Samtani MN, Perez-Ruixo JJ, Brown K, Cerneus D, Molloy C (2009) Pharmacokinetic and pharmacodynamic modeling of pegylated thrombopoietin mimetic peptide (PEG-TPOm) after single intravenous dose in healthy subjects. J Clin Pharmacol 49:336–350

    Article  PubMed  CAS  Google Scholar 

  31. Wang Y-M, Krzyzanski W, Doshi S, Xiao JJ, Perez Ruixo JJ, Chow AT (2010) Pharmacodynamics-mediated drug disposition (PDMDD) and precursor pool lifespan model for single dose of romiplostim in healthy subjects. AAPS J 12:729–740

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful to Dr. Juan Jose Perez-Ruixo for reviewing this manuscript and providing insightful comments. This study was supported by the National Institute of General Medical Sciences, National Institutes of Health Grant GM 57980.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Krzyzanski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 28 kb)

Supplementary material 2 (DOC 28 kb)

Appendices

Appendix 1

Derivation of Eq. 6

To simplify calculations we introduce the following variables

$$ {\text{k}}({\text{t}}) = {\text{k}}_{\text{in}} ({\text{t}}) - {\frac{{{\text{R}}_{0} }}{{{\text{T}}_{\text{R}} }}}{\text{E}}({\text{t}}) \quad{\text{and}}\quad{\text{Y}}_{\text{i}} = {\text{P}}_{\text{i}} - {\frac{{{\text{R}}_{0} }}{\text{n}}}\quad {\text{for i}} = 1, \ldots ,{\text{n}}. $$
(44)

Then the transit compartments model Eqs. 12 become

$$ {\frac{{{\text{dY}}_{1} }}{\text{dt}}} = {\text{k}}({\text{t}}) - {\frac{\text{n}}{{{\text{T}}_{\text{R}} }}}\,{\text{E}}({\text{t}}){\text{Y}}_{1} ,\quad{\text{Y}}_{1} (0) = 0 $$
(45)
$$ {\frac{{{\text{dY}}_{\text{i}} }}{\text{dt}}} = {\frac{\text{n}}{{{\text{T}}_{\text{R}} }}}{\text{E}}({\text{t}})\left( {{\text{Y}}_{{{\text{i}} - 1}} - {\text{Y}}_{\text{i}} } \right),\quad{\text{Y}}_{\text{i}} (0) = 0,\quad{\text{i}} = 2, \ldots ,{\text{n}} $$
(46)

Equation 45 can be solved using the integrating factor technique [24]:

$$ {\text{Y}}_{1} ({\text{t}}) = \int\limits_{0}^{\text{t}} {{\text{k}}(\tau )\exp \left( { - {\frac{\text{n}}{{{\text{T}}_{\text{R}} }}}\int\limits_{\tau }^{t} {{\text{E}}({\text{z}}){\text{dz}}} } \right)} {\text{d}}\tau $$
(47)

We will show by mathematical induction that for \( {\text{i}} = 1, \ldots ,{\text{n}} \)

$$ {\text{Y}}_{\text{i}} ({\text{t}}) = {\frac{1}{{({\text{i}} - 1)!}}}\left( {{\frac{\text{n}}{{{\text{T}}_{\text{R}} }}}} \right)^{{{\text{i}} - 1}} \int\limits_{0}^{\text{t}} {{\text{k}}(\tau )\left( {\int\limits_{\tau }^{\text{t}} {{\text{E}}({\text{z}}){\text{dz}}} } \right)^{{{\text{i}} - 1}} \exp \left( { - {\frac{\text{n}}{{{\text{T}}_{\text{R}} }}}\int\limits_{\tau }^{\text{t}} {{\text{E}}({\text{z}}){\text{dz}}} } \right)} {\text{d}}\tau $$
(48)

Since the case i = 1 reduces to Eq. 47, it remains to show that Eq. 48 is true for i + 1 assuming it holds for i. Using the same integrating factor as for Eq. 47 one can solve Eq. 46 with i + 1 to obtain the following representation of Yi+1:

$$ {\text{Y}}_{{{\text{i}} + 1}} ({\text{t}}) = {\frac{\text{n}}{{{\text{T}}_{\text{R}} }}}\int\limits_{0}^{\text{t}} {{\text{E}}(\tau ){\text{Y}}_{\text{i}} (\tau )\exp \left( { - {\frac{\text{n}}{{{\text{T}}_{\text{R}} }}}\int\limits_{\tau }^{\text{t}} {{\text{E}}({\text{z}}){\text{dz}}} } \right)} {\text{d}}\tau $$
(49)

One can substitute the right hand side of Eq. 48 for Yi(τ) in Eq. 49:

$$ {\text{Y}}_{{\text{i}} + 1} ({\text{t}}) = {\frac{1}{({\text{i}} - 1)!}}\left( {{\frac{{\text{n}}}{{{\text{T}}_{{\text{R}}} }}}} \right)^{{\text{i}}} \int\limits_{0}^{{\text{t}}} {{\text{E}}(\tau )\int\limits_{0}^{\tau } {{\text{k}}({\text{s}})\left( {\int\limits_{{\text{s}}}^{\tau } {{\text{E}}({\text{z}}){\text{dz}}} } \right)^{{\text{i}} - 1} \exp \left( { - {\frac{{\text{n}}}{{{\text{T}}_{{\text{R}}} }}}\int\limits_{{\text{s}}}^{\tau } {{\text{E}}({\text{z}}){\text{dz}}} } \right)} {\text{ds}}\exp \left( { - {\frac{{\text{n}}}{{{\text{T}}_{{\text{R}}} }}}\int\limits_{\tau }^{{\text{t}}} {{\text{E}}({\text{z}}){\text{dz}}} } \right){\text{d}}\tau }$$
(50)

Equation 50 can be further reduced to

$$ {\text{Y}}_{{{\text{i}} + 1}} ({\text{t}}) = {\frac{1}{{({\text{i}} - 1)!}}}\left( {{\frac{\text{n}}{{{\text{T}}_{\text{R}} }}}} \right)^{\text{i}} \int\limits_{0}^{\text{t}} {\int\limits_{0}^{\tau } {{\text{E}}(\tau ){\text{k(s)}}\left( {\int\limits_{\text{s}}^{\tau } {\text{E(z)dz}} } \right)^{{{\text{i}} - 1}} \exp \left( { - {\frac{\text{n}}{{{\text{T}}_{\text{R}} }}}\int\limits_{s}^{\text{t}} {\text{E(z)dz}} } \right)} {\text{dsd}}\tau } $$
(51)

Changing the order of the first two integrals in Eq. 51 results in

$$ {\text{Y}}_{{{\text{i}} + 1}} ({\text{t}}) = {\frac{1}{{({\text{i}} - 1)!}}}\left( {{\frac{\text{n}}{{{\text{T}}_{\text{R}} }}}} \right)^{\text{i}} \int\limits_{0}^{\text{t}} {\int\limits_{\text{s}}^{\text{t}} {{\text{E}}(\tau ){\text{k(s)}}\left( {\int\limits_{\text{s}}^{\tau } {\text{E(z)dz}} } \right)^{{{\text{i}} - 1}} \exp \left( { - {\frac{\text{n}}{{{\text{T}}_{\text{R}} }}}\int\limits_{\text{s}}^{\text{t}} {\text{E(z)dz}} } \right)} {\text{d}}\tau {\text{ds}}} $$
(52)

The only part of the integrant that depends on τ is equal to

$$ \int\limits_{\text{s}}^{\text{t}} {{\text{E}}(\tau )\left( {\int\limits_{\text{s}}^{\tau } {\text{E(z)dz}} } \right)^{{{\text{i}} - 1}} {\text{d}}\tau } = {\frac{1}{\text{i}}}\int\limits_{\text{s}}^{\text{t}} {\left( {\int\limits_{\text{s}}^{\tau } {\text{E(z)dz}} } \right)^{\text{i}} {\text{d}}\tau } $$
(53)

Substituting Eq. 53 in the integrant of Eq. 52 gives

$$ {\text{Y}}_{{{\text{i}} + 1}} ({\text{t}}) = {\frac{1}{{{\text{i}}!}}}\left( {{\frac{\text{n}}{\text{T}}}} \right)^{\text{i}} \int\limits_{0}^{\text{t}} {{\text{k}}({\text{s}})\left( {\int\limits_{\text{s}}^{\text{t}} {\text{E(z)dz}} } \right)^{\text{i}} \exp \left( { - {\frac{\text{n}}{{{\text{T}}_{\text{R}} }}}\int\limits_{\text{s}}^{\text{t}} {\text{E(z)dz}} } \right){\text{ds}}} $$
(54)

Equation 11 is equal to Eq. 48 with i + 1, which completes the recursive proof that Eq. 48 holds true for \( {\text{i}} = 1, \ldots ,{\text{n}} \). Finally, to derive Eq. 6 one needs to replace Yi(t) and k(τ) in Eq. 48 with the original Pi and kin(t) using Eq. 44.

Appendix 2

Derivation of Eq. 16

Equation 6 with i = n implies that the solution for the n-th compartment is

$$ {\text{P}}_{\text{n}} ({\text{t}}) = {\frac{{{\text{R}}_{0} }}{\text{n}}} + {\frac{1}{{({\text{n}} - 1)!}}}\left( {{\frac{\text{n}}{{{\text{T}}_{\text{R}} }}}} \right)^{{{\text{n}} - 1}} \int\limits_{0}^{\text{t}} {\left( {{\text{k}}_{\text{in}} (\tau ) - {\frac{{{\text{R}}_{0} }}{{{\text{T}}_{\text{R}} }}}{\text{E}}(\tau )} \right)\left( {\int\limits_{\tau }^{\text{t}} {\text{E(z)dz}} } \right)^{{{\text{n}} - 1}} \exp \left( { - {\frac{\text{n}}{{{\text{T}}_{\text{R}} }}}\int\limits_{\tau }^{\text{t}} {\text{E(z)dz}} } \right)} {\text{d}}\tau $$
(55)

Changing the variables τ → t − τ in the first integral results in

$$ {\text{P}}_{\text{n}} ( {\text{t)}} = {\frac{{{\text{R}}_{ 0} }}{\text{n}}} + {\frac{1}{{({\text{n}} - 1)!}}}\left( {{\frac{\text{n}}{{{\text{T}}_{\text{R}} }}}} \right)^{{{\text{n}} - 1}} \int\limits_{0}^{\text{t}} {\left( {{\text{k}}_{\text{in}} ({\text{t}} - \tau ) - {\frac{{{\text{R}}_{0} }}{{{\text{T}}_{\text{R}} }}}{\text{E}}({\text{t}} - \tau )} \right)\left( {\int\limits_{{{\text{t}} - \tau }}^{\text{t}} {\text{E(z)dz}} } \right)^{{{\text{n}} - 1}} \exp \left( { - {\frac{\text{n}}{{{\text{T}}_{\text{R}} }}}\int\limits_{{{\text{t}} - \tau }}^{\text{t}} {\text{E(z)dz}} } \right)} {\text{d}}\tau $$
(56)

The difference in the integrand can be integrated separately as follows

$$ \begin{gathered} {\text{P}}_{\text{n}} ( {\text{t)}} = {\frac{{{\text{R}}_{0} }}{\text{n}}} - {\frac{1}{{({\text{n}} - 1)!}}}\,{\frac{{{\text{R}}_{0} }}{{{\text{T}}_{\text{R}} }}}\left( {{\frac{\text{n}}{\text{T}}}} \right)^{{{\text{n}} - 1}} \int\limits_{0}^{\text{t}} {{\text{E}}({\text{t}} - \tau )\left( {\int\limits_{{{\text{t}} - \tau }}^{\text{t}} {\text{E(z)dz}} } \right)^{{{\text{n}} - 1}} \exp \left( { - {\frac{\text{n}}{{{\text{T}}_{\text{R}} }}}\int\limits_{{{\text{t}} - \tau }}^{\text{t}} {\text{E(z)dz}} } \right)} {\text{d}}\tau \hfill \\ + {\frac{1}{{({\text{n}} - 1)!}}}\left( {{\frac{\text{n}}{{{\text{T}}_{\text{R}} }}}} \right)^{{{\text{n}} - 1}} \int\limits_{0}^{\text{t}} {{\text{k}}_{\text{in}} ({\text{t}} - \tau )\left( {\int\limits_{{{\text{t}} - \tau }}^{\text{t}} {\text{E(z)dz}} } \right)^{{{\text{n}} - 1}} \exp \left( { - {\frac{\text{n}}{{{\text{T}}_{\text{R}} }}}\int\limits_{{{\text{t}} - \tau }}^{\text{t}} {\text{E(z)dz}} } \right)} {\text{d}}\tau \hfill \\ \end{gathered} $$
(57)

The change of the variable

$$ {\text{x}} \to \int\limits_{{{\text{t}} - \tau }}^{\text{t}} {\text{E(z)dz}} $$
(58)

reduces the integral in the second term of Eq. 57 to the following form

$$ \begin{gathered} {\text{I}}_{\text{n}} = {\frac{1}{{({\text{n}} - 1)!}}}\,{\frac{{{\text{R}}_{0} }}{{{\text{T}}_{{\text{R}}} }}}\left( {{\frac{{\text{n}}}{{{\text{T}}_{{\text{R}}} }}}} \right)^{{\text{n}} - 1} \int\limits_{0}^{{\text{t}}} {{\text{E}}({\text{t}} - \tau )\left( {\int\limits_{{\text{t}} - \tau }^{{\text{t}}} {{\text{E}}({\text{z}}){\text{dz}}} } \right)^{{\text{n}} - 1} \exp \left( { - {\frac{{\text{n}}}{{{\text{T}}_{{\text{R}}} }}}\int\limits_{{\text{t}} - \tau }^{{\text{t}}} {{\text{E(z)dz}}} } \right)} {\text{d}}\tau = \hfill \\ {\frac{{{\text{R}}_{0} }}{{\text{n}}}}\,{\frac{1}{({\text{n}} - 1)!}}\left( {{\frac{{\text{n}}}{{{\text{T}}_{{\text{R}}} }}}} \right)^{{\text{n}}} \int\limits_{0}^{{\int\limits_{0}^{{\text{t}}} {{\text{E(z)dz}}} }} {{\text{x}}^{{\text{n}} - 1} \exp \left( { - {\frac{{\text{n}}}{{{\text{T}}_{{\text{R}}} }}}x} \right)} {\text{dx}} \hfill \\ \end{gathered} $$
(59)

The properties of the gamma distribution imply that [21]

$$ {\frac{1}{({\text{n}} - 1)!}}\left( {{\frac{{\text{n}}}{{{\text{T}}_{{\text{R}}} }}}} \right)^{{\text{n}}} \int\limits_{0}^{\infty } {{\text{x}}^{{\text{n}} - 1} \exp \left( { - {\frac{{\text{n}}}{{{\text{T}}_{{\text{R}}} }}}{\text{x}}} \right)} {\text{dx}} = 1 $$
(60)

Consequently,

$$ {\text{I}}_{{\text{n}}} = {\frac{{{\text{R}}_{0} }}{{\text{n}}}} - {\frac{1}{({\text{n}} - 1)!}}{\frac{{{\text{R}}_{0} }}{{{\text{T}}_{{\text{R}}} }}}\left( {{\frac{{\text{n}}}{{{\text{T}}_{{\text{R}}} }}}} \right)^{{\text{n}} - 1} \int\limits_{{\text{t}}}^{\infty } {{\text{E(t}} - \tau )\left( {\int\limits_{{\text{t}} - \tau }^{t} {{\text{E(z)dz}}} } \right)^{{\text{n}} - 1} \exp \left( { - {\frac{{\text{n}}}{{{\text{T}}_{{\text{R}}} }}}\int\limits_{{\text{t}} - \tau }^{{\text{t}}} {{\text{E(z)dz}}} } \right)} d\tau $$
(61)

where the original integration variable τ was restored in the integral in Eq. 60. The baseline conditions Eq. 3 imply that for τ > t

$$ {\frac{{{\text{R}}_{0} }}{{{\text{T}}_{{\text{R}}} }}} = {\text{k}}_{{\text{in}}0} = {\text{k}}_{{\text{in}}} ({\text{t}} - \tau ) \quad{\text{and}}\quad{\text{E}}({\text{t}} - \tau ) = 1 $$
(62)

Hence

$$ {\text{I}}_{{\text{n}}} = {\frac{{{\text{R}}_{0} }}{{\text{n}}}} - {\frac{1}{({\text{n}} - 1)!}}\left( {{\frac{{\text{n}}}{{{\text{T}}_{{\text{R}}} }}}} \right)^{{\text{n}} - 1} \int\limits_{{\text{t}}}^{\infty } {{\text{k}}_{{\text{in}}} ({\text{t}} - \tau )\left( {\int\limits_{{\text{t}} - \tau }^{{\text{t}}} {{\text{E(z)dz}}} } \right)^{{\text{n}} - 1} \exp \left( { - {\frac{{\text{n}}}{{{\text{T}}_{{\text{R}}} }}}\int\limits_{{\text{t}} - \tau }^{{\text{t}}} {{\text{E(z)dz}}} } \right)} d\tau $$
(63)

One can insert In back in Eq. 57 resulting in

$$ {\text{P}}_{{\text{n}}} = {\frac{1}{({\text{n}} - 1)!}}\left( {{\frac{{\text{n}}}{{{\text{T}}_{{\text{R}}} }}}} \right)^{{\text{n}} - 1} \int\limits_{0}^{\infty } {{\text{k}}_{{\text{in}}} ({\text{t}} - \tau )\left( {\int\limits_{{\text{t}} - \tau }^{{\text{t}}} {{\text{E(z)dz}}} } \right)^{{\text{n}} - 1} \exp \left( { - {\frac{{\text{n}}}{{{\text{T}}_{{\text{R}}} }}}\int\limits_{{\text{t}} - \tau }^{{\text{t}}} {{\text{E(z)dz}}} } \right)} {\text{d}}\tau $$
(64)

After multiplying both sides of Eq. 64 by nE(t)/TR one arrives at Eq. 16.

Appendix 3

Derivation of Eq. 19

For given times t and τ let us define

$$ \hat{{\text{E}}}_{{\text{t}}} (\tau ) = \int\limits_{{\text{t}}}^{{\text{t}} + \tau } {{\text{E(z)dz}}} $$
(65)

Since the derivative

$$ {\frac{{{\text{d}}\hat{{\text{E}}}_{{\text{t}}} (\tau )}}{{\text{d}}\tau }} = {\text{E}}({\text{t}} + \tau ) $$
(66)

Equation 17 can be simplified to the following form

$$ \ell_{{\text{n}}} ({\text{t}},\tau ) = \left( {{\frac{{\text{n}}}{{{\text{T}}_{{\text{R}}} }}}} \right)^{{\text{n}}} {\frac{{\hat{{\text{E}}}_{{\text{t}}} (\tau )^{{\text{n}} - 1} }}{({\text{n}} - 1)!}}\exp \left( { - {\frac{{\text{n}}}{{{\text{T}}_{{\text{R}}} }}}\hat{{\text{E}}}_{{\text{t}}} (\tau )} \right){\frac{{{\text{d}}\hat{{\text{E}}}_{{\text{t}}} (\tau )}}{{\text{d}}\tau }} $$
(67)

Applying the change of variables \( s \to \hat{{\text{E}}}_{{\text{t}}} (\tau ) \) in the following integral, one can further reduce it to the integral of the gamma function γn(s) defined in Eq. 18:

$$ \int\limits_{0}^{\infty } {\ell_{{\text{n}}} ({\text{t}},\tau ){\text{d}}\tau = } \int\limits_{0}^{\infty } {\gamma_{{\text{n}}} {\text{(s)ds}} = 1} $$
(68)

The latter is a consequence of γn(s) as a probability density function. This proves Eq. 19.

Appendix 4

Derivation of Eq. 29

To prove Eq. 29 we use the definition of the Dirac delta function δτ0(τ) = δ(τ − τ0) stating that for any test function ϕ(τ) (an indefinitely differentiable function with a compact support contained in the interval (0,∞)) the following relationship holds [19]:

$$ \int\limits_{0}^{\infty } {\delta (\tau - \tau_{0} )\phi (\tau ){\text{d}}\tau = \phi (\tau_{0} )} $$
(69)

Let ϕ(τ) be a test function, then according to Eq. 24

$$ \int\limits_{0}^{\infty } {\delta_{\tau 0} \bar{^ \circ }\Upphi_{{\text{t}}} (\tau )\phi (\tau ){\text{d}}\tau = } \int\limits_{0}^{\infty } {\delta \left( {\Upphi_{{\text{t}}} (\tau ) - \tau_{0} } \right)\Upphi_{{\text{t}}}^{\prime } (\tau )\phi (\tau ){\text{d}}\tau } $$
(70)

The substitution \( {\text{s}} \to \Upphi_{{\text{t}}} (\tau ) \) transforms the last integral in Eq. 70 to the following

$$ \int\limits_{0}^{\infty } {\delta \left( {{\text{s}} - \tau_{0} } \right)\phi \left( {\Upphi_{{\text{t}}}^{ - 1} ({\text{s}})} \right){\text{ds}}} = \phi \left( {\Upphi_{{\text{t}}}^{ - 1} (\tau_{0} )} \right) $$
(71)

where \( \Upphi_{{\text{t}}}^{ - 1} ({\text{s}}) \) is the inverse of \( \Upphi_{{\text{t}}} (\tau ) \). The integral in Eq. 71 is evaluated according to Eq. 69. Consequently, for any test function ϕ(τ)

$$ \int\limits_{0}^{\infty } {\delta_{\tau 0} \bar{^ \circ }\Upphi_{{\text{t}}} (\tau )\phi (\tau ){\text{d}}\tau } = \phi \left( {\Upphi_{{\text{t}}}^{ - 1} (\tau_{0} )} \right) $$
(72)

This proves Eq. 29.

Appendix 5

Derivation of Eqs. 30, 32, and 33

A general form for the basic LIDRE model for drug affecting the point distribution according to Eqs. 27 and 28 will be described as follows

$$ \frac{{\text{dR}}}{{\text{dt}}} = {\text{k}}_{{\text{in}}} ({\text{t}}) - \int\limits_{0}^{\infty } {{\text{k}}_{{\text{in}}} ({\text{t}} - \tau )\ell ({\text{t}} - \tau ,\tau )} {\text{d}}\tau $$
(73)

where after applying Eqs. 24, 65 and 66:

$$ \ell ({\text{t}},\tau ) = \delta_{{{\text{T}}_{{\text{R}}} }} \bar{^ \circ }\hat{{\text{E}}}_{{\text{t}}} (\tau ) = \delta \left( {\hat{{\text{E}}}_{{\text{t}}} (\tau ) - {\text{T}}_{{\text{R}}} } \right){\text{E}}({\text{t}} + \tau ) $$
(74)

Therefore Eq. 73 can be further simplified to

$$ \frac{{\text{dR}}}{{\text{dt}}} = {\text{k}}_{{\text{in}}} ({\text{t}}) - \int\limits_{0}^{\infty } {{\text{k}}_{{\text{in}}} ({\text{t}} - \tau )\delta } \left( {\hat{{\text{E}}}_{{\text{t}} - \tau } (\tau ) - {\text{T}}_{{\text{R}}} )} \right){\text{E(t)d}}\tau $$
(75)

To calculate the integral in Eq. 75 let us introduce a transformation Ψt(τ)

$$ \Uppsi_{{\text{t}}} (\tau ) = \hat{{\text{E}}}_{{\text{t}} - \tau } (\tau ) = \int\limits_{{\text{t}} - \tau }^{{\text{t}}} {\text{{E(z)dz}}} $$
(76)

One can verify that for any time t

$$ \Uppsi_{{\text{t}}} (0) = 0,\,\,\Uppsi_{{\text{t}}} (\infty ) = \infty ,\,\,{\text{and}}\,\,{\frac{{{\text{d}}\Uppsi_{{\text{t}}} }}{{\text{d}}\tau }}(\tau ) = {\text{E}}({\text{t}} - \tau ) > 0 $$
(77)

The change of variables s → Ψt(τ) transforms the integral in Eq. 74 to

$$ \int\limits_{0}^{\infty } {{\text{k}}_{{\text{in}}} \left( {{\text{t}} - \Uppsi_{{\text{t}}}^{ - 1} ({\text{s}})} \right)\delta ({\text{s}} - {\text{T}}_{{\text{R}}} ){\frac{{\text{E}}({\text{t}})}{{{\text{E}}\left( {{\text{t}} - \Uppsi_{{\text{t}}}^{ - 1} ({\text{s}})} \right)}}}{\text{ds}}} = {\text{k}}_{{\text{in}}} \left( {{\text{t}} - \Uppsi_{{\text{t}}}^{ - 1} ({\text{T}}_{{\text{R}}} )} \right){\frac{{\text{E(t)}}}{{{\text{E}}\left( {{\text{t}} - \Uppsi_{{\text{t}}}^{ - 1} ({\text{T}}_{{\text{R}}} )} \right)}}} $$
(78)

where the derivative of the inverse is

$$ {\frac{{{\text{d}}\Uppsi_{{\text{t}}}^{ - 1} }}{{\text{ds}}}} = {\frac{1}{{{\text{E}}\left( {{\text{t}} - \Uppsi_{{\text{t}}}^{ - 1} ({\text{s}})} \right)}}} $$
(79)

and the definition of the delta function δ(τ − TR) has been utilized. To abbreviate the right hand side of Eq. 78 the following function of time t is introduced:

$$ {\text{T}}_{{\text{E}}} ({\text{t}}) = {\text{t}} - \Uppsi_{{\text{t}}}^{ - 1} ({\text{T}}_{{\text{R}}} ) $$
(80)

Then Eq. 73 simplifies to Eq. 30

$$ \frac{{\text{dR}}}{{\text{dt}}} = {\text{k}}_{{\text{in}}} ({\text{t}}) - {\text{k}}_{{\text{in}}} \left( {{\text{T}}_{{\text{E}}} ({\text{t}})} \right){\frac{{\text{E(t)}}}{{{\text{E}}\left( {{\text{T}}_{{\text{E}}} ({\text{t}})} \right)}}} $$
(81)

Notice that Eq. 81 was derived without an assumption of any specific form for kin(t) like one specified by Eqs. 9 and 10. Equations 76 and 80 imply

$$ \int\limits_{{{\text{T}}_{{\text{E}}} ({\text{t}})}}^{{\text{t}}} {{\text{E(z)dz}} = {\text{T}}_{{\text{R}}} } $$
(82)

At t = 0, Eq. 82 becomes

$$ \int\limits_{{{\text{T}}_{{\text{E}}} (0)}}^{0} {{\text{E(z)dz}} = {\text{T}}_{{\text{R}}} } $$
(83)

Since TR > 0 and E(z) > 0, then TE(0) < 0. For z < 0, E(z) = 1 (see Eq. 3), which implies

$$ {\text{T}}_{\text{E}} \left( 0 \right) = - {\text{T}}_{\text{R}} $$
(84)

This proves Eq. 33. To derive a differential equation for TE(t), calculate the derivative with respect to t of both sides of Eq. 82. The derivative of the right-hand side is zero, and the derivative of the integral in the left-hand side results in the following equation:

$$ {\text{E(t)}} - {\frac{{{\text{dT}}_{{\text{E}}} ({\text{t}})}}{{\text{dt}}}}{\text{E}}\left( {{\text{T}}_{{\text{E}}} ({\text{t}})} \right) = 0 $$
(85)

That results in Eq. 32.

Appendix 6

Proof of Eqs. 3739

Integration of both sides of Eq. 26 leads to

$$ {\text{R}}_{{\text{n}}} ({\text{t}}) = {\text{R}}_{0} + \int\limits_{0}^{{\text{t}}} {{\text{k}}_{{\text{in}}} {\text{(s)ds}}} - \int\limits_{0}^{{\text{t}}} {\int\limits_{0}^{\infty } {{\text{k}}_{{\text{in}}} ({\text{s}} - \tau )\ell_{{\text{n}}} ({\text{t}} - \tau ,\tau ){\text{d}}\tau {\text{ds}}} } $$
(86)

Similarly, integration of Eq. 30 results in

$$ {\text{R}}_{\infty } ({\text{t}}) = R_{0} + \int\limits_{0}^{{\text{t}}} {{\text{k}}_{{\text{in}}} {\text{(s)ds}}} - \int\limits_{0}^{{\text{t}}} {{\text{k}}_{{\text{in}}} \left( {{\text{T}}_{{\text{E}}} ({\text{s}})} \right)} {\frac{{\text{E(s)}}}{{E\left( {{\text{T}}_{{\text{E}}} ({\text{s}})} \right)}}}{\text{ds}} $$
(87)

Upon subtraction of both sides of Eqs. 87 and 86:

$$ {\text{R}}_{\infty } ({\text{t}}) - {\text{R}}_{{\text{n}}} ({\text{t}}) = \int\limits_{0}^{{\text{t}}} {\int\limits_{0}^{\infty } {{\text{k}}_{{\text{in}}} ({\text{s}} - \tau )\ell_{{\text{n}}} ({\text{t}} - \tau ,\tau ){\text{d}}\tau {\text{ds}}} } - \int\limits_{0}^{{\text{t}}} {{\text{k}}_{{\text{in}}} \left( {{\text{T}}_{{\text{E}}} ({\text{s}})} \right)} {\frac{{\text{E(s)}}}{{{\text{E}}\left( {{\text{T}}_{{\text{E}}} ({\text{s}})} \right)}}}{\text{ds}} $$
(88)

Following the definition of Ψt(τ), Eq. 88 implies that

$$ \int\limits_{0}^{\infty } {{\text{k}}_{{\text{in}}} ({\text{s}} - \tau )\ell_{{\text{n}}} ({\text{t}} - \tau ,\tau ){\text{d}}\tau } = \int\limits_{0}^{\infty } {{\text{k}}_{{\text{in}}} \left( {{\text{s}} - \Uppsi_{{\text{s}}}^{ - 1} ({\text{z}})} \right){\frac{{\text{E(s)}}}{{{\text{E}}\left( {{\text{s}} - \Uppsi_{{\text{s}}}^{ - 1} ({\text{z}})} \right)}}}\gamma_{{\text{n}}} {\text{(z)dz}}} = \int\limits_{0}^{\infty } {\phi_{{\text{s}}} ({\text{z}})\gamma_{{\text{n}}} {\text{(z)dz}}} $$
(89)

Analogously, Eq. 80 implies

$$ {\text{k}}_{{\text{in}}} \left( {{\text{T}}_{{\text{E}}} ({\text{s}})} \right){\frac{{\text{E}}({\text{s}})}{{{\text{E}}\left( {{\text{T}}_{{\text{E}}} ({\text{s}})} \right)}}} = {\text{k}}_{{\text{in}}} \left( {{\text{t}} - \Uppsi_{{\text{s}}}^{ - 1} ({\text{T}}_{{\text{R}}} )} \right){\frac{{\text{E(s)}}}{{{\text{E}}\left( {{\text{s}} - \Uppsi_{{\text{s}}}^{ - 1} ({\text{T}}_{{\text{R}}} )} \right)}}} = \phi_{{\text{s}}} ({\text{T}}_{{\text{R}}} ) $$
(90)

Hence

$$ {\text{R}}_{\infty } ({\text{t}}) - {\text{R}}_{{\text{n}}} ({\text{t}}) = \int\limits_{0}^{{\text{t}}} {\int\limits_{0}^{\infty } {\phi_{{\text{s}}} ({\text{z}})\gamma_{{\text{n}}} {\text{(z)dzds}}} } - \int\limits_{0}^{t} {\phi_{{\text{s}}} ({\text{T}}_{{\text{R}}} ){\text{ds}}} $$
(91)

and Eq. 37 follows. To show that Eq. 37 holds true one can transform Eq. 91 further utilizing the fact that γn(τ) is a p.d.f.

$$ {\text{R}}_{\infty } ({\text{t}}) - {\text{R}}_{\text{{n}}} ({\text{t}}) = \int\limits_{0}^{{\text{t}}} {\int\limits_{0}^{\infty } {\left( {\phi_{{\text{s}}} {\text{(z)}} - \phi_{{\text{s}}} ({\text{T}}_{{\text{R}}} )} \right)\gamma_{{\text{n}}} {\text{(z)dzds}}} } $$
(92)

Since Eqs. 710 imply that ϕs(τ) is a bound function of s and τ, i.e. there is a constant M > 0 such that for any s and τ

$$ \phi_{{\text{s}}} (\tau ) \le {\text{M}} $$
(93)

Hence

$$ \left| {\int\limits_{0}^{\infty } {\left( {\phi_{{\text{s}}} ({\text{z}}) - \phi_{{\text{s}}} ({\text{T}}_{{\text{R}}} )} \right)\gamma_{{\text{n}}} {\text{(z)dz}}} } \right| \le 2{\text{M}}\int\limits_{0}^{\infty } {\gamma_{{\text{n}}} {\text{(z)dz}}} = 2{\text{M}} $$
(94)

The dominated convergence theorem [25] implies that for any t the right hand side of Eq. 92 approaches 0 as n → ∞, for any s

$$ \int\limits_{0}^{\infty } {\left( {\phi_{{\text{s}}} ({\text{z}}) - \phi_{{\text{s}}} ({\text{T}}_{{\text{R}}} )} \right)\gamma_{{\text{n}}} {\text{(z)dz}}} \to 0\,\,{\text{as n}} \to \infty $$
(95)

Equation 95 is true due to the approximate identity property of the gamma distribution p.d.f. γn(τ) cited in Eq. 36, which we will prove for an arbitrary continuous and bound function f(τ). Let ε > 0 be a small number and M > 0 be such |f(τ)| ≤ M for all τ. Then the continuity of f(τ) implies that there is a small ε > 0 such that for any TR-ε < τ < TR + ε

$$ |{\text{f}}(\tau ) -{\text{f}}({\text{T}}_{{\text{R}}} )| \le \varepsilon $$
(96)

The integral in Eq. 95 can be partitioned into a sum of three integrals:

$$ \begin{gathered} \int\limits_{0}^{\infty } {({\text{f}}(\tau ) - {\text{f(T}}_{{\text{R}}} ))\gamma_{{\text{n}}} (\tau ){\text{d}}\tau } = \hfill \\ \int\limits_{0}^{{{\text{T}}_{{\text{R}}} - \varepsilon }} {({\text{f}}(\tau ) - {\text{f(T}}_{{\text{R}}} ))\gamma_{{\text{n}}} (\tau ){\text{d}}\tau } + \int\limits_{{{\text{T}}_{{\text{R}}} - \varepsilon }}^{{{\text{T}}_{{\text{R}}} + \varepsilon }} {({\text{f}}(\tau ) - {\text{f}}({\text{T}}_{{\text{R}}} ))\gamma_{{\text{n}}} (\tau ){\text{d}}\tau } + \int\limits_{{{\text{T}}_{{\text{R}}} + \varepsilon }}^{\infty } {({\text{f}}(\tau ) - {\text{f(T}}_{{\text{R}}} ))\gamma_{{\text{n}}} (\tau ){\text{d}}\tau } \hfill \\ \end{gathered} $$
(97)

The first and third integral in Eq. 97 can be bound as follows:

$$ \left| {\int\limits_{0}^{{{\text{T}}_{{\text{R}}} - \varepsilon }} {\left( {{\text{f}}(\tau ) - {\text{f}}({\text{T}}_{{\text{R}}} )} \right)\gamma_{{\text{n}}} (\tau ){\text{d}}\tau } } \right| \le 2{\text{M}}\int\limits_{0}^{{{\text{T}}_{{\text{R}}} - \varepsilon }} {\gamma_{{\text{n}}} (\tau ){\text{d}}\tau } $$
(98)

and

$$ \left| {\int\limits_{{{\text{T}}_{{\text{R}}} - \varepsilon }}^{\infty } {\left( {{\text{f}}(\tau ) - {\text{f(T}}_{{\text{R}}} )} \right)\gamma_{{\text{n}}} (\tau ){\text{d}}\tau } } \right| \le 2{\text{M}}\int\limits_{{{\text{T}}_{{\text{R}}} - \varepsilon }}^{\infty } {\gamma_{{\text{n}}} (\tau ){\text{d}}\tau } $$
(99)

The bound for the second integral in Eq. 97 is

$$ \left| {\int\limits_{{{\text{T}}_{{\text{R}}} - \varepsilon }}^{{{\text{T}}_{{\text{R}}} + \varepsilon }} {\left( {{\text{f}}(\tau ) -{\text{f}}({\text{T}}_{{\text{R}}} )} \right)\gamma_{{\text{n}}} (\tau ){\text{d}}\tau } } \right| \le \varepsilon \int\limits_{{{\text{T}}_{{\text{R}}} - \varepsilon }}^{{{\text{T}}_{{\text{R}}} + \varepsilon }} {\gamma_{{\text{n}}} (\tau ){\text{d}}\tau } \le \varepsilon \int\limits_{0}^{\infty } {\gamma_{{\text{n}}} (\tau ){\text{d}}\tau } = \varepsilon $$
(100)

Since

$$ \int\limits_{0}^{{{\text{T}}_{{\text{R}}} - \varepsilon }} {\gamma_{{\text{n}}} (\tau ){\text{d}}\tau } \to 0 \quad {\text{and}}\,\int\limits_{{{\text{T}}_{{\text{R}}} - \varepsilon }}^{\infty } {\gamma_{{\text{n}}} (\tau ){\text{d}}\tau } \to 0 \quad {\text{as n}} \to \infty $$
(101)

the first and third integral in Eq. 97 can be bound by ε for large enough n, and consequently

$$ \left| {\int\limits_{0}^{\infty } {\left( {{\text{f}}(\tau ) - {\text{f}}({\text{T}}_{{\text{R}}} )} \right)\gamma_{{\text{n}}} (\tau ){\text{d}}\tau } } \right| \le 3\varepsilon $$
(102)

This completes the derivations of Eqs. 36, 37 and 38.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krzyzanski, W. Interpretation of transit compartments pharmacodynamic models as lifespan based indirect response models. J Pharmacokinet Pharmacodyn 38, 179–204 (2011). https://doi.org/10.1007/s10928-010-9183-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-010-9183-z

Keywords

Navigation