Skip to main content

Advertisement

Log in

Holocene paleostorms identified by particle size signatures in lake sediments from the northeastern United States

  • Original Paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

The frequency and timing of Holocene paleofloods in the hilly terrain of New Hampshire and Maine are identified using 14C and high-resolution (cm-by-cm) particle size analysis of sediment cores taken from six post-glacial lakes (~0.1–1.4 km2). A total of nine sediment cores (4.5–6 m long) were taken near the base of stream delta foreslopes. End-member modeling of the particle-size frequency distributions from each core produces 3–5 representative end member distributions, or end members (EMs). Concurrent increases in mean and median particle size, and in the relative abundance of the coarsest EM(s), indicate increased transport capacity of inflowing tributaries, resulting from rainstorms. In all 9 cores, particle size data show clear signs of episodic, high-energy sediment transport events where proxy measurements such as loss-on-ignition and magnetic susceptibility do not, demonstrating the sensitivity of particle size analysis in paleostorm investigations made using lake sediment cores. Floods caused by storms in this region peaked around 1.4, 2.1, 3.0, 3.9, 6.8, 8.2, and 11.5 ka cal BP, and presently appear to be increasing in frequency. Periods of storminess in New Hampshire and Maine correlate well with other records of precipitation and climate in the northeastern United States during the Holocene, further supporting modern records which show tropical air masses as a primary driver of extreme precipitation events in New England (Ludlum 1996; Konrad 2001; Sisson and Gyakum 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alley RB, Mayewski PA, Sowers T, Stuiver M, Taylor KC, Clark PU (1997) Holocene climatic instability: a prominent, widespread event 8,200 year ago. Geology 25:483–486. doi:10.1130/0091-7613(1997)025<0483:HCIAPW>2.3.CO;2

    Article  Google Scholar 

  • Ambers RK (2001) Using the sediment record in a western oregon flood-control reservoir to assess the influence of storm history and logging on sediment yield. J Hydrol (Amst) 244:181–200. doi:10.1016/S0022-1694(01)00331-6

    Article  Google Scholar 

  • Arnaud F (2005) Discriminating bio-induced and detrital sedimentary processes from particle size distribution of carbonates and non-carbonates in hard water lake sediments. J Paleolimnol 34:519–526. doi:10.1007/s10933-005-6787-1

    Article  Google Scholar 

  • Arnaud F, Lignier V, Revel M, Desmet M, Beck C, Pourchet M et al (2002) Flood and earthquake disturbance of 210Pb geochronology (Lake Anterne, NW Alps). Terra Nova 14:225–232. doi:10.1046/j.1365-3121.2002.00413.x

    Article  Google Scholar 

  • Arnaud F, Revel M, Chapron E, Desmet M, Tribovillard N (2005) 7200 years of Rhône river flooding activity in Lake Le Bourget: a high-resolution sediment record of NW Alps hydrology. Holocene 15:420–428. doi:10.1191/0959683605hl801rp

    Article  Google Scholar 

  • Atallah EH, Bosart LF (2003) The extratropical transition and precipitation distribution of hurricane floyd (1999). Mon Weather Rev 131:1063–1081. doi:10.1175/1520-0493(2003)131<1063:TETAPD>2.0.CO;2

    Article  Google Scholar 

  • Baker VR (1988) Flood erosion. In: Baker VR, Kochel RC, Patton PC (eds) Flood processes: flood geomorphology. Wiley, New York, pp 81–96

    Google Scholar 

  • Beierle BD, Lamoureux SF, Cockburn JMH, Spooner I (2002) A new method for visualizing particle size distributions. J Paleolimnol 27:279–283. doi:10.1023/A:1014209120642

    Article  Google Scholar 

  • Bengtsson L, Enell M (1986) Chemical analysis. In: Berglund BE (ed) Handbook of holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 423–451

    Google Scholar 

  • Bierman P, Lini A, Zehfuss P, Church A, Davis PT, Southon J et al (1997) Postglacial ponds and alluvial fans: recorders of holocene landscape history. Geol Soc Am Today 7:1–8

    Google Scholar 

  • Bond GC, Showers W, Cheseby M, Lotti R, Almasi P, deMenocal P et al (1997) A pervasive millennial-scale cycle in North Atlantic holocene and glacial climates. Science 278:1257–1266. doi:10.1126/science.278.5341.1257

    Article  Google Scholar 

  • Boose ER, Chamberlin KE, Foster DR (2001) Landscape and regional impacts of hurricanes in New England. Ecol Monogr 71:27–48

    Article  Google Scholar 

  • Bosley AC, Bierman PR, Noren A, Galster J (2001) Identification of paleoclimatic cycles during the Holocene using grain size analysis of sediments cored from Lake Morey in Fairlee, VT. In: Geological Society of America, Northeastern Section, 36th annual meeting, Burlington, VT, Abstract 42, 85 pp 

  • Broomhead DS, King GP (1986) Extracting qualitative dynamics from experimental data. Physica D 20:217–236. doi:10.1016/0167-2789(86)90031-X

    Article  Google Scholar 

  • Brown S (1999) Terrestrial sediment deposition in ritterbush pond: implications for holocene storm frequency in northern Vermont [Master’s thesis], University of Vermont, 170 pp

  • Brown P, Kennett JP, Ingram BL (1999) Marine evidence for episodic holocene megafloods in North America and the northern Gulf of Mexico. Paleoceanography 14:498–510. doi:10.1029/1999PA900017

    Article  Google Scholar 

  • Brown SL, Bierman PR, Lini A, Southon J (2000) 10,000 year record of extreme hydrologic events. Geology 28:335–338. doi:10.1130/0091-7613(2000)28<335:YROEHE>2.0.CO;2

    Article  Google Scholar 

  • Brown S, Bierman P, Lini A, Southon J, Davis PT (2002) Lake cores as archives of holocene watershed erosion events. J Paleolimnol 28:219–236. doi:10.1023/A:1021623020656

    Article  Google Scholar 

  • Campbell C (1998) Late holocene lake sedimentology and climate change in Southern Alberta, Canada. Quat Res 49:96–101. doi:10.1006/qres.1997.1946

    Article  Google Scholar 

  • Campbell ID, Campbell C, Apps MJ, Rutter NW, Bush ABG (1998) Late Holocene ~1500 year climatic periodicities and their implications. Geology 26:471–473. doi:10.1130/0091-7613(1998)026<0471:LHYCPA>2.3.CO;2

    Article  Google Scholar 

  • Campbell ID, Last WM, Campbell C, Clare S, McAndrews JH (2000) The late-holocene paleohydrology of pine lake, Alberta: a multiproxy investigation. J Paleolimnol 24:427–441. doi:10.1023/A:1008155622656

    Article  Google Scholar 

  • Dieffenbacher-Krall AC, Nurse AM (2005) Late-glacial and holocene record of lake levels of mathews pond and whitehead lake, northern maine, USA. J Paleolimnol 34:283–310. doi:10.1007/s10933-005-4958-8

    Article  Google Scholar 

  • Donnelly JP, Bryant SS, Butler J, Dowling J, Fan L, Hausmann N et al (2001) 700 year sedimentary record of intense hurricane landfalls in southern New England. Geol Soc Am Bull 113:714–727. doi:10.1130/0016-7606(2001)113<0714:YSROIH>2.0.CO;2

    Article  Google Scholar 

  • Drake ED (1999) Temporal and spatial variability of the sediment grain-size distribution on the Eel shelf: the flood layer of 1995. Mar Geol 154:169–182. doi:10.1016/S0025-3227(98)00111-X

    Article  Google Scholar 

  • Eden DN, Page MJ (1998) Palaeoclimatic implications of a storm erosion record from late holocene lake sediments, North Island, New Zealand. Palaeogeogr Palaeoclimatol Palaeoecol 139:37–58. doi:10.1016/S0031-0182(97)00136-3

    Article  Google Scholar 

  • Ellis KG, Mullins HT, Patterson WP (2004) Deglacial to middle holocene (16,600 to 6,000 calendar years BP) climate change in the northeastern United States inferred from multi-proxy stable isotope data, Seneca Lake, New York. J Paleolimnol 31:343–361. doi:10.1023/B:JOPL.0000021853.03476.95

    Article  Google Scholar 

  • Folk RL, Ward WC (1957) Brazos River bar: a study in the significance of grain size parameters. J Sediment Petrol 27:3–26

    Google Scholar 

  • Galster J (2001) Quantifying response rates of lake ecosystems to holocene deglaciation through the use of stable isotopes [Master’s thesis], University of Vermont

  • Hupp CR (1988) Plant ecological aspects of flood geomorphology and paleoflood history. In: Baker VR, Kochel RC, Patton PC (eds) Flood processes: flood geomorphology. Wiley, New York, pp 335–356

    Google Scholar 

  • IPCC (2001) Climate change 2001: synthesis report. In: Watson RT, The Core Writing Team (eds) Third assessment report of the integovernmental panel on climate change. Cambridge University Press, Cambridge, 398 pp

  • Jackson ST, Whitehead DR (1991) Holocene vegetation patterns in the adirondack mountains. Ecology 72:641–653. doi:10.2307/2937204

    Article  Google Scholar 

  • Jennings KL, Bierman P, Southon J (2003) Timing and style of deposition on humid-temperate fans, Vermont, USA. Geol Soc Am Bull 115:182–199. doi:10.1130/0016-7606(2003)115<0182:TASODO>2.0.CO;2

    Article  Google Scholar 

  • Knox JC (1999) Sensitivity of modern and holocene floods to climate change. Quat Sci Rev 19:439–457. doi:10.1016/S0277-3791(99)00074-8

    Article  Google Scholar 

  • Komar PD (1988) Sediment transport by floods. In: Baker VR, Kochel RC, Patton PC (eds) Flood processes: flood geomorphology. Wiley, New York, pp 97–112

    Google Scholar 

  • Konrad CEII (2001) The most extreme precipitation events over the eastern United States from 1950 to 1996: considerations of scale. J Hydrometeorol 2:309–325. doi:10.1175/1525-7541(2001)002<0309:TMEPEO>2.0.CO;2

    Article  Google Scholar 

  • Lamb HH (1979) Variation and changes in the wind and ocean circulation: the little ice age in the northeast atlantic. Quat Res 11:1–20. doi:10.1016/0033-5894(79)90067-X

    Article  Google Scholar 

  • Lamoureux SF (2000) Five centuries of interannual sediment yield and rainfall-induced erosion in the Canadian High Arctic recorded in lacustrine varves. Water Resour Res 36:309–318. doi:10.1029/1999WR900271

    Article  Google Scholar 

  • Liu K, Fearn ML (1993) Lake-sediment record of late holocene hurricane activities from coastal alabama. Geology 21:793–796. doi:10.1130/0091-7613(1993)021<0793:LSROLH>2.3.CO;2

    Article  Google Scholar 

  • Liu K, Fearn ML (2000) Reconstruction of prehistoric landfall frequencies of catastrophic hurricanes in northwestern florida from lake sediment records. Quat Res 54:238–245. doi:10.1006/qres.2000.2166

    Article  Google Scholar 

  • Lord AM (2003) Evolution rates of post-glacial lake ecosystems in northern New England: A Geochemical Study using Lake Sediments [Master’s thesis], University of Vermont, 111 pp

  • Ludlum D (1963) Early american hurricanes. American Meteorological Society, Boston, 198 pp

  • Ludlum D (1996) The vermont weather book. Vermont Historical Society, Montpelier, 302 pp

  • Magny M (2004) Holocene climate variability as reflected by mid-European lake-level fluctuations and its probable impact on prehistoric human settlements. Quat Int 113:65–79. doi:10.1016/S1040-6182(03)00080-6

    Article  Google Scholar 

  • Moy CM, Seltzer GO, Rodbell DT, Anderson DM (2002) Variability of El nino/southern oscillation activity at millennial timescales during the holocene epoch. Nature 420:162–165. doi:10.1038/nature01194

    Article  Google Scholar 

  • Nesje A, Dahl SO, Matthews JA, Berrisford MS (2001) A 4,500 year record of river floods obtained from a sediment core in Lake Atnsjoen, eastern Norway. J Paleolimnol 25:329–342. doi:10.1023/A:1011197507174

    Article  Google Scholar 

  • Newby PE, Killoran P, Waldorf MR, Shuman BN, Webb RS, Webb TIII (2000) 14,000 years of sediment, vegetation, and water-level changes at the makepeace cedar swamp, Southeastern Massachusetts. Quat Res 53:352–368. doi:10.1006/qres.1999.2120

    Article  Google Scholar 

  • Noren A (2002) A 13,000 year regional record of holocene storms in the northeastern United States [Master’s thesis], University of Vermont, 170 pp

  • Noren A, Bierman PR, Steig EJ, Lini A, Southon J (2002) Millennial-scale storminess variability in the northeastern United States during the Holocene epoch. Nature 419:821–824. doi:10.1038/nature01132

    Article  Google Scholar 

  • Ouellet M (1997) Lake sediments and Holocene seismic hazard assessment within the St. Lawrence Valley, Quebec. Geol Soc Am Bull 109:631–642. doi:10.1130/0016-7606(1997)109<0631:LSAHSH>2.3.CO;2

    Article  Google Scholar 

  • Page MJ, Trustrum NA, DeRose RC (1994) A high-resolution record of storm-induced erosion from lake sediments, New Zealand. J Paleolimnol 11:333–348. doi:10.1007/BF00677993

    Article  Google Scholar 

  • Parris A, Bosley A, Bierman P, Lini A, Noren A, Lord A, et al. (2001) Grain by grain; Holocene storms and hillslope erosion in New England. Geological Society of America Abstracts with Programs. 314 pp

  • Prins MA, Weltje GJ (1999) End-member modelling of siliclastic grain-size distributions: The late Quaternary record of eolian and fluvial sediment supply to the Arabian Sea and its paleoclimatic significance. In: Harbaugh JW, Watney WL, Rankey EC, Slingerland R, Goldstein RH, Franseen EK (eds) Numerical experiments in stratigraphy: recent advances in stratigraphic and sedimentologic computer simulations. SEPM, Tulsa, pp 91–111

    Google Scholar 

  • Prins MA, Postma G, Weltje GJ (2000) Controls on terrigenous sediment supply to the Arabian Sea during the late quaternary: the makran continental slope. Mar Geol 169:351–371. doi:10.1016/S0025-3227(00)00087-6

    Article  Google Scholar 

  • Prins MA, Bouwer LM, Beets CJ, Simon RT, Weltje GJ, Kruk RW et al (2002) Ocean circulation and iceberg discharge in the glacial North Atlantic: inferences from unmixing of sediment size distributions. Geology 30:555–558. doi:10.1130/0091-7613(2002)030<0555:OCAIDI>2.0.CO;2

    Article  Google Scholar 

  • Reasoner MA (1993) Equipment and procedure improvements for a lightweight, inexpensive, percussion core sampling system. J Paleolimnol 8:273–281. doi:10.1007/BF00177859

    Article  Google Scholar 

  • Rodbell DT, Seltzer GO, Anderson DM, Abbott MB, Enfield DB, Newman JH (1999) A 15,000-year record of El nino-driven alluviation in southwestern Ecuador. Science 283:516–520. doi:10.1126/science.283.5401.516

    Article  Google Scholar 

  • Schnurrenberger D, Russell J, Kelts K (2003) Classification of lacustrine sediments based on sedimentary components. J Paleolimnol 29:141–154. doi:10.1023/A:1023270324800

    Article  Google Scholar 

  • Shuman BN, Bravo J, Kaye J, Lynch JA, Newby PE, Webb TIII (2001) Late quaternary water-level variations and vegetation history at crooked pond, southern massachusetts. Quat Res 56:401–410. doi:10.1006/qres.2001.2273

    Article  Google Scholar 

  • Sisson PA, Gyakum JR (2004) Synoptic-scale precursors to significant cold-season precipitation events in Burlington, Vermont. Weather Forecast 19:841–854. doi:10.1175/1520-0434(2004)019<0841:SPTSCP>2.0.CO;2

    Article  Google Scholar 

  • Spear RB, Davis MB, Shane LC (1994) Late quaternary history of low- and mid-elevation vegetation in the white mountains of new hampshire. Ecol Monogr 64:85–109. doi:10.2307/2937056

    Article  Google Scholar 

  • Stuiver M, Reimer PJ (1993) Extended 14C Data Base and Revised CALIB 3.0 14C Age Calibration Program. Radiocarbon 35:215–230

    Google Scholar 

  • Stuiver M, Burr GS, Hughen KA, Kromer B, McCormac G, Van Der Plicht J et al (1998) INTCAL98 radiocarbon age calibration, 24,000-0 cal BP. Radiocarbon 40:1041–1083

    Google Scholar 

  • Syvitski JPM (1991) Principles, methods, and application of particle-size analysis. Cambridge University Press, Cambridge, 368 pp

  • Thorndycraft V, Hu Y, Oldfield F, Crooks PRJ, Appleby PG (1998) Individual flood events detected in the recent sediments of Petit Lac d’Annecy, eastern France. Holocene 8:741–746. doi:10.1191/095968398668590504

    Article  Google Scholar 

  • Vautard R, Ghil M (1989) Singular spectrum analysis in non-linear dynamics, with applications to paleoclimatic time series. Physica D 35:395–424. doi:10.1016/0167-2789(89)90077-8

    Article  Google Scholar 

  • Weltje GJ (1997) End-member modeling of compositional data: numerical-statistical algorithms for solving the explicit mixing problem. J Math Geol 29:503–549. doi:10.1007/BF02775085

    Article  Google Scholar 

  • Weltje GJ, Prins MA (2003) Muddled or Mixed? Inferring palaeoclimate from size distributions of deep-sea clastics. Sediment Geol 162:39–62. doi:10.1016/S0037-0738(03)00235-5

    Article  Google Scholar 

  • Winkler MG (1985) A 12,000 year history of vegetation and climate for Cape Cod, Massachusetts. Quat Res 23:301–312. doi:10.1016/0033-5894(85)90037-7

    Article  Google Scholar 

  • Zong Y, Tooley MJ (1999) Evidence of mid-Holocene storm-surge deposits from Morecambe Bay, northwest England: a biostratigraphical approach. Quat Int 55:43–50. doi:10.1016/S1040-6182(98)00022-6

    Article  Google Scholar 

Download references

Acknowledgments

We thank J. Southon and T. Guilderson, Lawrence Livermore National Laboratory, for radiocarbon dates, A. Bosley, A. Lord, and L. Morgan for core analysis, and P. Ryan of Middlebury College Geology Department for laser diffraction. We thank W. Hession, C. Mehrtens, and the University of Vermont, Critical Reviews of Geologic Writing class for comments that improved the manuscript. Review by Arnaud improved the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam S. Parris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parris, A.S., Bierman, P.R., Noren, A.J. et al. Holocene paleostorms identified by particle size signatures in lake sediments from the northeastern United States. J Paleolimnol 43, 29–49 (2010). https://doi.org/10.1007/s10933-009-9311-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-009-9311-1

Keywords

Navigation