Skip to main content

Advertisement

Log in

Adsorption removal of thiophene and dibenzothiophene from oils with activated carbon as adsorbent: effect of surface chemistry

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Commercial coconut-based activated carbons (AC), before and after being treated using 65 wt% HNO3 at different temperatures (termed as AC–Hs), were used as adsorbents to remove thiophene (T) or dibenzothiophene (DBT) from model oils. The fresh AC sample and all of the AC–Hs samples were characterized by Boehm titration, Fourier-transform infrared spectroscopy, and thermal analysis, which yield the information of the surface chemistry properties of the carbon materials. The results show that in comparison to the fresh AC sample, the quantity of oxygen-containing functional groups on the surface of AC–Hs samples increases as the pretreatment temperature of the fresh AC sample increases. The adsorption capabilities of the AC samples for removal of T and DBT from model oils were evaluated in a batch-type reactor. It has been found that the refractory DBT can be removed easily over the untreated commercial AC with the removal efficiency even being higher than that of T. In the case of acid modified AC–Hs samples, the efficiency for removal of T has been greatly improved, but this is not the case for the removal of DBT. The possible mechanism for adsorption removal of T and DBT over activated carbons is discussed in terms of the quantity of surface oxygen-containing functional groups of adsorbents and the chemical structure of sulfur compounds. The effect of olefin (1-octene) and aromatic hydrocarbons (benzene) in the model oils on the selective adsorption DBT over AC is also evaluated, revealing that in the case of DBT, the competitive adsorption is involved in the process, and the removal efficiency levels off at a level over 80%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.J. Farrauto, C.H. Bartholomew, Fundamentals of Industrial Catalytic Processes (Chapman and Hall, New York, 1997)

    Google Scholar 

  2. J. Weitkamp, M. Schwark, S. Ernest, J. Chem. Soc. Chem. Commun. 1133 (1991)

  3. R.T. Yang, A. Takahashi, F.H. Yang, Ind. Eng. Chem. Res. 40, 6236 (2001)

    Article  CAS  Google Scholar 

  4. A. Takahashi, F.H. Yang, R.T. Yang, Ind. Eng. Chem. Res. 41, 2487 (2002)

    Article  CAS  Google Scholar 

  5. M.A. Larrubia, A. Gutièrrez-Alejandre, J. Ramìrez, G. Busca, Appl. Catal. A Gen. 224, 167 (2002)

    Article  CAS  Google Scholar 

  6. A.B.S.H. Salem, H.S. Hamid, Chem. Eng. Technol. 20, 342 (1997)

    Article  CAS  Google Scholar 

  7. S.H.D. Lee, R. Kumar, M. Krumpelt, Sep. Purif. Technol. 26, 247 (2002)

    Article  CAS  Google Scholar 

  8. X.L. Ma, L. Sun, C.S. Song, Catal. Today 77, 107 (2002)

    Article  CAS  Google Scholar 

  9. A. Gil, G. de la Puente, P. Grange, Microporous Mater. 12, 51 (1997)

    Article  CAS  Google Scholar 

  10. P.L. Walker, P.A. Thrower, Chemistry and Physics of Carbon (Marcel Dekker, New York, 1981), p. 1

    Google Scholar 

  11. D.D. Whitehurst, T. Isoda, I. Mochida, Adv. Catal. 42, 345 (1998)

    CAS  Google Scholar 

  12. H.P. Boehm, E. Diehl, W. Heck, R. Sappok, Angew. Chem., Int. Ed. Engl. 3, 669 (1964)

    Article  Google Scholar 

  13. C. Yu, J.S. Qiu, Y.F. Sun, X.H. Li, J. Fuel Chem. Technol. (in Chinese), 35, 121 (2007)

    Google Scholar 

  14. H.P. Boehm, Adv. Catal. 16, 179 (1966)

    Article  CAS  Google Scholar 

  15. H.P. Boehm, G. Bewer, In Proc. 4th Inter. London Carbon and Graphite Conf. 344 (1974)

  16. C.A. León, Y. León, L.R. Radovic, Chem. Phys. Carbon 24, 213 (1992)

    Google Scholar 

  17. J.S. Qiu, B.Y. Wang, Z.Y. Deng, Carbon Tech. 4, 11 (1996)

    Google Scholar 

  18. T.J. Bandosz, J. Jagiello, K. Putyera, T.A. Schwarz, J. Chem. Soc. Faraday Trans. 90, 3573 (1994)

    Article  CAS  Google Scholar 

  19. S. Biniak, G. Szymanski, J. Siedlewski, A. Swiatkowski, Carbon 35, 1799 (1997)

    Article  CAS  Google Scholar 

  20. P.A. Thrower, Chemistry, Physics of Carbon (Dekker, New York, 1989), p. 147

    Google Scholar 

  21. P.E. Fanning, M.A. Vannice, Carbon 31, 721 (1993)

    Article  CAS  Google Scholar 

  22. C. Moreno-Castilla, M.V. López-Ramón, F. Carrasco-Marín, Carbon 38, 1995 (2000)

    Article  CAS  Google Scholar 

  23. Y.F. Jia, K.M. Thomas, Langmuir 16, 1114 (2000)

    Article  CAS  Google Scholar 

  24. C.T. Hsieh, H.S. Teng, Carbon 38, 863 (2000)

    Article  CAS  Google Scholar 

  25. S. Biniak, M. Pakuła, G.S. Szymański, A. Świątkowski, Langmuir 15, 6117 (1999)

    Article  CAS  Google Scholar 

  26. S. Bashkova, A. Bagreev, T.J. Bandosz, Environ. Sci. Technol. 36, 2777 (2002)

    Article  CAS  Google Scholar 

  27. A. Bagreev, S. Bashkova, T.J. Bandosz, Langmuir 18, 1257 (2002)

    Article  CAS  Google Scholar 

  28. J.L. Figueiredo, M.F.R. Pereira, M.M.A. Freitas, J.J.M. Órfão, Carbon 37, 1379 (1999)

    Article  CAS  Google Scholar 

  29. U. Zielke, K.J. Hüttinger, W.P. Hoffman, Carbon 34, 983 (1996)

    Article  CAS  Google Scholar 

  30. Y. Sano, K-H. Choi, I. Mochida, Energy Fuels, 18, 644 (2004)

    Article  CAS  Google Scholar 

  31. B. Marchon, J. Carrazza, H. Heinemann, G.A. Somorjai, Carbon 26, 507 (1988)

    Article  CAS  Google Scholar 

  32. Y. Otake, R.G. Jenkins, Carbon 31, 109 (1993)

    Article  CAS  Google Scholar 

  33. Z.X. Jiang, Y. Liu, X.P. Sun, F.P. Tian, F.X. Sun, C.H. Liang, W.S. You, C.R. Han, C. Li, Langmuir 19, 731 (2003)

    Article  CAS  Google Scholar 

  34. P.A. Thrower, Chemistry, Physics of Carbon (Marcel Dekker, New York, 1994), p. 213

    Google Scholar 

  35. K. Hashimoto K. Matzuo H. Kominami Y. Kera, J. Chem. Soc. Faraday Trans. 93, 3729 (1997)

    Article  Google Scholar 

  36. S. Velu, X.L. Ma, C.S. Song, M. Namazian, S. Sethuraman, G. Venkataraman, Energy Fuels 19, 1116 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the National Basic Research Program of China (Nos. 2003CB615806, G2005CB221203), the Program for New Century Excellent Talents in Universities supported by the Education Ministry of China (NCET-04-0274), and Fellowship for Talented Young Scientists supported by the Natural Science Foundation of Liaoning Province of China (No. 3040009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Shan Qiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, C., Qiu, J.S., Sun, Y.F. et al. Adsorption removal of thiophene and dibenzothiophene from oils with activated carbon as adsorbent: effect of surface chemistry. J Porous Mater 15, 151–157 (2008). https://doi.org/10.1007/s10934-007-9116-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-007-9116-4

Keywords

Navigation