Skip to main content
Log in

Microwave assisted synthesis of ETS-10

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Engelhard Titanium Silicate-10 (ETS-10) has attracted interest for gas adsorption, catalysis, separations and ion-exchange. The practical application of ETS-10 would benefit from improvements in the synthesis. In this paper we present a 30 h microwave assisted synthesis at 230 °C which can be compared with the 72 h required by conventional heating. The effects of different titanium precursors, pH, heating time, and organic templates on ETS-10 were also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.M. Kuznicki, U.S. Patent 4,853,202, 1989

  2. M.W. Anderson, O. Terasaki, T. Ohsuna, P.J.O. Malley, A. Philippou, S.P. MacKay et al., Philos. Mag. B 71, 813 (1995). doi:10.1080/01418639508243589

    Article  CAS  Google Scholar 

  3. M.W. Anderson, O. Terasaki, T. Ohsuna, A. Philippou, S.P. MacKay, A. Ferreira et al., Nature 367, 347 (1994). doi:10.1038/367347a0

    Article  CAS  Google Scholar 

  4. M.W. Anderson, O. Terasaki, T. Ohsuna, A. Philippou, S.P. MacKay, A. Ferreira et al., Stud. Surf. Sci. Catal. 98, 258 (1995). doi:10.1016/S0167-2991(06)81181-X

    Article  CAS  Google Scholar 

  5. C.C. Pavel, D. Vuono, L. Catanzaro, P. De Luca, N. Bilba, A. Nastro et al., Micropor. Mesopor. Mater. 56, 227 (2002). doi:10.1016/S1387-1811(02)00489-4

    Article  CAS  Google Scholar 

  6. A. Philippou, J. Rocha, M.W. Anderson, Catal. Lett. 57, 151 (1999). doi:10.1023/A:1019099616405

    Article  CAS  Google Scholar 

  7. S.B. Waghmode, V.V. Thakur, A. Sudalai, S. Sivasanker, Tetrahedron Lett. 42, 3145 (2001). doi:10.1016/S0040-4039(01)00389-6

    Article  CAS  Google Scholar 

  8. T.K. Das, A.J. Chandwadkar, A.P. Budhkar, S. Sivasanker, Micropor. Mater. 5, 401 (1996). doi:10.1016/0927-6513(95)00075-5

    Article  CAS  Google Scholar 

  9. A. Zecchina, C. Otero Arean, G. Turnes Palomino, F. Geobaldo, C. Lamberti, G. Spoto et al., Phys. Chem. Chem. Phys. 1, 1649 (1999). doi:10.1039/a808741e

    Article  CAS  Google Scholar 

  10. N.A. Al-Baghli, K.F. Loughlin, J. Chem. Eng. Data 50, 843 (2005). doi:10.1021/je0496793

    Article  CAS  Google Scholar 

  11. Z. Lin, J. Rocha, A. Navajas, C. Tellez, J. Coronas, J. Santamaria, Micropor. Mesopor. Mater. 67, 79 (2004). doi:10.1016/j.micromeso.2003.10.004

    Article  CAS  Google Scholar 

  12. G.X.S. Zhao, J.L. Lee, P.A. Chia, Langmuir 19, 1977 (2003). doi:10.1021/la026490l

    Article  CAS  Google Scholar 

  13. L. Lu, G. Tsoi, X.S. Zhao, Ind. Eng. Chem. Res. 43, 7900 (2004). doi:10.1021/ie0498044

    Article  CAS  Google Scholar 

  14. X. Yang, J.L. Paillaud, H.F.W.J. van Breukelen, H. Kessler, E. Duprey, Micropor. Mesopor. Mater. 46, 1 (2001). doi:10.1016/S1387-1811(01)00267-0

    Article  CAS  Google Scholar 

  15. X. Liu, J.K. Thomas, Chem. Commun. (Camb.), 1435 (1996). doi:10.1039/cc9960001435

  16. J. Rocha, A. Ferreira, Z. Lin, M.W. Anderson, Micropor. Mesopor. Mater. 23, 253 (1998). doi:10.1016/S1387-1811(98)00120-6

    Article  CAS  Google Scholar 

  17. L.L.F. Su, X.S. Zhao, J. Porous. Mater. 13, 263 (2006). doi:10.1007/s10934-006-8014-5

    Article  CAS  Google Scholar 

  18. S.H. Noh, S.D. Kim, Y.J. Chung, J.W. Park, D.K. Moon, D.T. Hayhurst et al., Micropor. Mesopor. Mater. 88, 197 (2006)

    Article  CAS  Google Scholar 

  19. X. Wang, A.J. Jacobson, Chem. Commun. (Camb.) 973 (1999).

  20. Z. Ji, J. Warzywoda, A. Sacco, Micropor. Mesopor. Mater. 81, 201 (2005)

    Article  CAS  Google Scholar 

  21. Z. Ji, B. Yilmaz, J. Warzywoda, J.A. Sacco, Micropor. Mesopor. Mater. 81, 1 (2005)

    Article  CAS  Google Scholar 

  22. W.J. Kim, M.C. Lee, J.C. Yoo, D.T. Hayhurst, Micropor. Mesopor. Mater. 41, 79 (2000). doi:10.1016/S1387-1811(00)00275-4

    Article  CAS  Google Scholar 

  23. W.J. Kim, S.D. Kim, H.S. Jung, D.T. Hayhurst, Micropor. Mesopor. Mater. 56, 89 (2002). doi:10.1016/S1387-1811(02)00459-6

    Article  CAS  Google Scholar 

  24. Z. Ji, J. Warzywoda, A. Sacco Jr., Micropor. Mesopor. Mater. 109, 1 (2008). doi:10.1016/j.micromeso.2007.04.019

    Article  CAS  Google Scholar 

  25. B. Yilmaz, J. Warzywoda, J.A. Sacco, J. Cryst. Growth 271, 325 (2004). doi:10.1016/j.jcrysgro.2004.07.050

    Article  CAS  Google Scholar 

  26. S. Mintova, V. Valtchev, S. Angelova, L. Konstantinov, Zeolites 18, 269 (1997). doi:10.1016/S0144-2449(97)00042-0

    Article  CAS  Google Scholar 

  27. V. Kostov-Kytin, S. Ferdov, Y. Kalvachev, B. Mihailova, O. Petrov, Micropor. Mesopor. Mater. 105, 232 (2007). doi:10.1016/j.micromeso.2007.03.036

    Article  CAS  Google Scholar 

  28. Z. Lin, J. Rocha, P. Brandao, A. Ferreira, A.P. Esculcas, J.D. Pedrosa de Jesus et al., J. Phys. Chem. B 101, 7114 (1997). doi:10.1021/jp971137n

    Article  CAS  Google Scholar 

  29. V.P. Valtchev, J. Chem. Soc. Chem. Commun. 261 (1994). doi:10.1039/c39940000261

  30. F. Bensebaa, N. Patrito, Y. Le Page, P. L’Ecuyer, D. Wang, J. Mater. Chem. 14, 3378 (2004). doi:10.1039/b404280h

    Article  CAS  Google Scholar 

  31. C.O. Kappe, Angew. Chem. Int. Ed. 43, 6250 (2004). doi:10.1002/anie.200400655

    Article  CAS  Google Scholar 

  32. D.S. Kim, J.S. Chang, J.S. Hwang, S.E. Park, J.M. Kim, Micropor. Mesopor. Mater. 68, 77 (2004). doi:10.1016/j.micromeso.2003.11.017

    Article  CAS  Google Scholar 

  33. M. Larhed, C. Moberg, A. Hallberg, Acc. Chem. Res. 35, 717 (2002). doi:10.1021/ar010074v

    Article  CAS  Google Scholar 

  34. Z. Ni, R.I. Masel, J. Am. Chem. Soc. 128, 12394 (2006). doi:10.1021/ja0635231

    Article  CAS  Google Scholar 

  35. K.J. Rao, B. Vaidhyanathan, M. Ganguli, P.A. Ramakrishnan, Chem. Mater. 11, 882 (1999). doi:10.1021/cm9803859

    Article  CAS  Google Scholar 

  36. P.M. Slangen, J.C. Jansen, H. van Bekkum, Micropor. Mater. 9, 259 (1997). doi:10.1016/S0927-6513(96)00119-8

    Article  CAS  Google Scholar 

  37. O.G. Somani, A.L. Choudhari, B.S. Rao, S.P. Mirajkar, Mater. Chem. Phys. 82, 538 (2003). doi:10.1016/S0254-0584(03)00224-4

    Article  CAS  Google Scholar 

  38. S. Tierney, M. Heeney, L. McCulloch, Synth. Met. 148, 195 (2005). doi:10.1016/j.synthmet.2004.09.015

    Article  CAS  Google Scholar 

  39. M. Tsuji, M. Hashimoto, Y. Nishizawa, M. Kubokawa, T. Tsuji, Chem. Eur. J. 11, 440 (2005). doi:10.1002/chem.200400417

    Article  CAS  Google Scholar 

  40. C.G. Wu, T. Bein, Chem. Commun. (Camb.) 925 (1996). doi:10.1039/cc9960000925

  41. T. Yamamoto, Y. Wada, H. Miyamoto, S. Yanagida, Chem. Lett. 33, 246 (2004). doi:10.1246/cl.2004.246

    Article  CAS  Google Scholar 

  42. D. Coutinho, J.A. Losilla, K.J. Balkus, Micropor. Mesopor. Mater. 90, 229 (2006). doi:10.1016/j.micromeso.2005.11.007

    Article  CAS  Google Scholar 

  43. B. Panzarella, G. Tompsett, C. Conner William, K. Jones, ChemPhysChem 8, 357 (2007). doi:10.1002/cphc.200600496

    Article  CAS  Google Scholar 

  44. G.A. Tompsett, B. Panzarella, W·C. Conner, K·S. Yngvesson, F. Lu, S.L. Suib, K·W. Jones, S. Bennett, Rev. Sci. Instrum. 77 124101/1 (2007)

  45. E.K. Nyutu, W.C. Conner, S.M. Auerbach, C.-H. Chen, S.L. Suib, J. Phys. Chem. C 112, 1407 (2008). doi:10.1021/jp075647l

    Article  CAS  Google Scholar 

  46. B. Panzarella, A. Tompsett Geoffrey, K.S. Yngvesson, W.C. Conner, J. Phys. Chem. B 111, 12657 (2007). doi:10.1021/jp072622d

    Article  CAS  Google Scholar 

  47. W.C. Conner, G. Tompsett, K.-H. Lee, K.S. Yngvesson, J. Phys. Chem. B 108, 13913 (2004). doi:10.1021/jp037358c

    Article  CAS  Google Scholar 

  48. G.A. Tompsett, W.C. Conner, K.S. Yngvesson, ChemPhysChem 7, 296 (2006). doi:10.1002/cphc.200500449

    Article  CAS  Google Scholar 

  49. G.A. Tompsett, B.A. Panzarella, W.C. Conner, S. Bennett, K.W. Jones, Nucl. Instrum. Methods Phys. Res. Sect. B 261, 863 (2007)

    Article  CAS  Google Scholar 

  50. M.D. Turner, R.L. Laurence, K.S. Yngvesson, W.C. Conner, Catal. Lett. 71, 133 (2001). doi:10.1023/A:1009063406893

    Article  CAS  Google Scholar 

  51. C.C. Pavel, W. Schmidt, Chem. Commun. (Camb.) 882 (2006). doi:10.1039/b515720j

  52. S. Nair, H.-K. Jeong, A. Chandrasekaran, C.M. Braunbarth, M. Tsapatsis, S.M. Kuznicki, Chem. Mater. 13, 4247 (2001). doi:10.1021/cm0103803

    Article  CAS  Google Scholar 

  53. X. Zou, M.S. Dadachov, Acta Crystallogr. Sect. C: Crystallogr. Struct. Commun. 56, 738 (2000). doi:10.1107/S010827010000545X

    Article  Google Scholar 

  54. W.H. Zachariasen, H.A. Plettinger, Acta Crystallogr. 18, 710 (1965). doi:10.1107/S0365110X65001639

    Article  CAS  Google Scholar 

  55. C.J. Howard, T.M. Sabine, F. Dickson, Acta Crystallogr. B 47, 462 (1991). doi:10.1107/S010876819100335X

    Article  Google Scholar 

  56. H. Xu, Y. Zhang, A. Navrotsky, Micropor. Mesopor. Mater. 47, 285 (2001). doi:10.1016/S1387-1811(01)00388-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We also thank the Robert A. Welch Foundation and the Strategic Partnership for Research in Nanotechnology (SPRING), for the supporting of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth J. Balkus Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Losilla, J.A., Balkus, K.J. Microwave assisted synthesis of ETS-10. J Porous Mater 16, 487–496 (2009). https://doi.org/10.1007/s10934-008-9223-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-008-9223-x

Keywords

Navigation