Skip to main content
Log in

Adsorption of theophylline from aqueous solution on organic aerogels and carbon aerogels

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

A series of organic aerogels (AGs) with different porous structures were prepared by controlling the conditions of sol–gel polymerization, and related carbon aerogles (CAs) were obtained by carbonization at 1,173 K. Their structures were investigated by N2 adsorption–desorption analysis. The static adsorption of theophylline from aqueous solution on AGs and CAs was studied to explore the influence of micropore areas, mesopore volume and surface chemistry on adsorption capacity. The results show that the adsorption capacities of theophylline on CAs are better than on AGs. The adsorption properties of all samples obey Langmuir model. The values of correlation coefficient are almost over 0.99, indicating a good mathematical fit. The comparison of the adsorptions on AGs and CAs indicated that both micropores and mesopores play important roles in determining the adsorption capacity. But for AGs, besides the pore structure, the surface chemistry also contributes to the adsorption capacities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R.W. Pekala, F.M. Kong, Polym. Prepr. 30, 221–223 (1989)

    CAS  Google Scholar 

  2. W.C. Li, A.H. Lu, S.C. Guo, Carbon 39, 1989–1994 (2001). doi:10.1016/S0008-6223(01)00029-X

    Article  CAS  Google Scholar 

  3. C. Moreno-Castilla, F.J. Maldonado-Hódar, Carbon 43, 455–465 (2005). doi:10.1016/j.carbon.2004.10.022

    Article  CAS  Google Scholar 

  4. R.W. Pekala, U.S. Patent 4873218 (10/1989)

  5. S.Q. Zhang, J. Wang, J. Shen, Z.S. Deng, Z.Q. Lai, B. Zhou et al., Nanostruct. Mater. 11, 375–381 (1999). doi:10.1016/S0965-9773(99)00054-9

    Article  CAS  Google Scholar 

  6. E. Bekyarova, K. Kaneko, J. Colloid Interface Sci. 238, 357–361 (2001). doi:10.1006/jcis.2001.7513

    Article  Google Scholar 

  7. A.K. Meenaa, G.K. Mishra, P.K. Rai, C. Rajagopa, P.N. Nagar, J. Hazard Mater. B 122, 161–170 (2005). doi:10.1016/j.jhazmat.2005.03.024

    Article  Google Scholar 

  8. J. Goel, K. Kadirvelu, C. Rajagopal, V.K. Garg, Carbon 43, 195–213 (2005). doi:10.1016/j.carbon.2004.08.002

    Article  Google Scholar 

  9. D.C. Wu, Z.Q. Sun, R.W. Fu, J. Appl. Polym. Sci. 99, 2263–2267 (2005). doi:10.1002/app. 22764

    Article  Google Scholar 

  10. H. Tamon, H. Ishizaka, T. Araki, M. Okazaki, Carbon 36, 1257–1262 (1998). doi:10.1016/S0008-6223(97)00202-9

    Article  CAS  Google Scholar 

  11. W.C. Li, A.H. Lu, S.C. Guo, J. Colloid Interface Sci. 254, 153–157 (2002). doi:10.1006/jcis.2002.8573

  12. E.D.L. Smith, R.B. Hammond, M.J. Jones, K.J. Roberts, J. Phys. Chem. B 105, 5818–5826 (2001). doi:10.1021/jp002060x

    Article  CAS  Google Scholar 

  13. D.C. Wu, R.W. Fu, M.S. Dresselhaus, G. Dresselhaus, Carbon 44, 675–681 (2006). doi:10.1016/j.carbon.2005.09.022

    Article  CAS  Google Scholar 

  14. C.M. Gonzalez-Garcýa, M.L. Gonzalez-Martýn, V. Gomez-Serrano, J.M. Bruque, L. Labajos-Broncano, Carbon 39, 849–855 (2001). doi:10.1016/S0008-6223(00)00191-3

    Article  Google Scholar 

  15. D. Savova, N. Petrov, M.F. Yardim, E. Ekinci, T. Budinova, M. Razvigorova et al., Carbon 41, 1897–1903 (2003). doi:10.1016/S0008-6223(03)00179-9

    Article  CAS  Google Scholar 

  16. N. Rauf, S.S. Tahir, J. Chem. Thermodyn. 32, 651–658 (2000). doi:10.1006/jcht.1999.0630

    Article  CAS  Google Scholar 

  17. Z. Wang, Z.Q. Shi, J.Z. Li, L.L. Ou, R.F. Wang, Z.Z. Wen, E.W. Liu, R.F. Shi, Y.G. Fan, Ion Exchange Adsorpt. 19, 16–22 (2003)

    CAS  Google Scholar 

  18. C.T. Hsieh, H. Teng, Carbon 38, 863–869 (2000). doi:10.1016/S0008-6223(99)00180-3

    Article  CAS  Google Scholar 

  19. A. Bakandritsos, E. Kouvelos, yT. Steriotis, D. Petridis, Langmuir 21, 2349–2355 (2005). doi:10.1021/la047495g

    Article  CAS  Google Scholar 

  20. G. Reichenauer, C. Stumpf, J. Fricke, J Non-Cryst. Solids 186, 334–341 (1995). doi:10.1016/0022-3093(95)00057-7

    Article  CAS  Google Scholar 

  21. W.J. Pan, D.R. Goldwater, Y. Zhang, B.L. Pilmer, R.H. Hunt, Aliment Pharmacol. Ther. 14:345. doi:10.1046/j.1365-2036.2000.00703.x

Download references

Acknowledgements

This research was supported by the Project of NNSFC (50472029, 50632040) and the Scientific Foundation of Guangdong (2004A30404001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruowen Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, W., Wu, D. & Fu, R. Adsorption of theophylline from aqueous solution on organic aerogels and carbon aerogels. J Porous Mater 16, 507–512 (2009). https://doi.org/10.1007/s10934-008-9225-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-008-9225-8

Keywords

Navigation