Skip to main content
Log in

Influence of the neutralization process on the preparation of titanate nanotubes by hydrothermal synthesis

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The influence of the neutralization process after hydrothermal synthesis on the structure and morphology of titanate nanotubes was investigated by X-ray diffraction, high-resolution transmission electron microscopy and Raman spectroscopy. Well formed nanotubes were obtained during the hydrothermal treatment of anatase in highly alkaline conditions. Synthesis at 150 °C led to the formation of layered titanate structure with the general formula Na2−x H x Ti2O5·1.8 H2O, where x depends on pH. The tubular morphology is not dependent on the Na+/H+ ion exchange reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  CAS  Google Scholar 

  2. A.V. Grigorieva, E.A. Goodilin, L.E. Derlyukova, T.A. Anufrieva, A.B. Tarasov, Y.A. Dobrovolskii, Y.D. Tretyakov, Titania nanotubes supported platinum catalyst in CO oxidation process. Appl. Catal. A Gen. 362(1–2), 20–25 (2009)

    Article  CAS  Google Scholar 

  3. V.R.K. Chary, G. Kishan, T. Bhaskar, C. Sivaraj, Structure and reactivity of vanadium oxide catalysts supported on anatase TiO2. J. Phys. Chem. B 102(35), 6792–6798 (1998)

    Article  CAS  Google Scholar 

  4. F.Y. Wei, L. Sang, Highly photocatalytic active and easily recycled sulfur-doped TiO2 nanotubes. Chin. J. Catal. 30(4), 335–339 (2009)

    CAS  Google Scholar 

  5. K. Woan, G. Pyrgiotakis, W. Sigmund, Photocatalytic carbon-nanotube-TiO2 composites. Adv. Mat. 21(21), 2233–2239 (2009)

    Article  CAS  Google Scholar 

  6. L. Kavan, J. Rathousky, M. Gratzel, V. Shklover, A. Zukal, J. Phys. Chem. B 104, 12012–12020 (2000)

    Article  CAS  Google Scholar 

  7. S.U. Rather, N. Mehraj-Ud-Din, R. Zacharia, S.W. Hwang, A.R. Kim, K.S. Nahm, Hydrogen storage of nanostructured TiO2-impregnated carbon nanotubes. Int. J. Hydrogen Energy 34(2), 961–966 (2009)

    Article  CAS  Google Scholar 

  8. X.D. Li, D.W. Zhang, Z. Sun, Y.W. Chen, S.M. Huang, Metal-free indoline-dye-sensitized TiO2 nanotube solar cells. Microelectronics J. 40(1), 108–114 (2009)

    Article  CAS  Google Scholar 

  9. B. O’Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991)

    Article  Google Scholar 

  10. P. Hoyer, Formation of a titanium dioxide nanotube array. Langmuir 12, 1411–1413 (1996)

    Article  CAS  Google Scholar 

  11. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Formation of titanium oxide nanotube. Langmuir 14, 3160–3163 (1998)

    Article  CAS  Google Scholar 

  12. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Titania nanotubes prepared by chemical processing. Adv. Mater. 11(15), 1307–1311 (1999)

    Article  CAS  Google Scholar 

  13. Q. Chen, G. Du, S. Zhang, L.-M. Peng, The structure of trititanate nanotubes. Acta. Crystallogr. B 58, 587–593 (2002)

    Article  CAS  Google Scholar 

  14. R. Ma, Y. Bando, T. Sasaki, Nanotubes of lepidocrocite titanates. Chem. Phys. Lett. 380, 577–582 (2003)

    Article  CAS  Google Scholar 

  15. R. Yoshida, Y. Suzuki, S. Yoshikawa, Effects of synthetic conditions and heat-treatment on the structure of partially ion-exchanged titanate nanotubes. Mater. Chem. Phys. 91(2-3), 409–416 (2005)

    Article  CAS  Google Scholar 

  16. C.-C. Tsai, H. Teng, Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments. Chem. Mater. 18, 367–373 (2006)

    Article  CAS  Google Scholar 

  17. H.H. Ou, S.L. Lo, Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application. Sep. Purif. Technol. 58, 179–191 (2007)

    Article  CAS  Google Scholar 

  18. D.V. Bavykin, J.M. Friedrich, F.C. Walsh, Protonated titanates and TiO2 nanostructured materials: synthesis, properties and applications. Adv. Mater. 18, 2807–2824 (2006)

    Article  CAS  Google Scholar 

  19. J. Yang, Z. Jin, X. Wang, W. Li, J. Zhang, S. Zhang, X. Guo, Z. Zhang, Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2. Dalton Trans. (20), 3898–3901 (2003)

  20. S. Zhang, L.-M. Peng, Q. Chen, G. Du, G. Dawson, W.Z. Zhou, Formation mechanism of H2Ti3O7 nanotubes. Phys. Rev. Lett. 91(25), 256103-1–256103-4 (2003)

    Article  Google Scholar 

  21. G.H. Du, Q. Chen, R.C. Che, Z.-Y. Yuan, L.-M. Peng, Preparation and structure analysis of titanium oxide nanotubes. Appl. Phys. Lett. 79(22), 3702–3704 (2001)

    Article  CAS  Google Scholar 

  22. M. Qamar, C.R. Yoon, H.J. Oh, D.H. Kim, J.H. Jho, K.S. Lee, W.J. Lee, H.G. Lee, S.J. Kim, Effect of post treatments on the structure and thermal stability of titanate nanotubes. Nanotechnology 17(24), 5922–5929 (2006)

    Article  CAS  Google Scholar 

  23. M. Qamar, C.R. Yoon, H.J. Oh, S.J. Kim, D.H. Kim, K.S. Lee, H.G. Lee, The effect of synthesis conditions on the formation of titanate nanotubes. J. Korean Phys. Soc. 49(4), 1493–1496 (2006)

    CAS  Google Scholar 

  24. G.S. Kim, H.K. Seo, V.P. Godble, Y.S. Kim, O.B. Yang, H.S. Shin, Electrophoretic deposition of titanate nanotubes from commercial titania nanoparticles: application to dye-sensitized solar cells. Electrochem. Commun. 8(6), 961–966 (2006)

    Article  CAS  Google Scholar 

  25. G.S. Kim, V.P. Godbole, H.K. Seo, Y.S. Kim, H.S. Shin, Sodium removal from titanate nanotubes in electrodeposition process. Electrochem. Commun. 8(3), 471–474 (2006)

    Article  CAS  Google Scholar 

  26. G.S. Kim, S.G. Ansari, H.K. Seo, Y.S. Kim, H.S. Shin, Effect of annealing temperature on structural and bonded states of titanate nanotube films. J. Appl. Phys. 101(2), 024314-1–024314-6 (2007)

    Google Scholar 

  27. Materials Data Inc, JADE software used for XRD analysis version 5 was release in 2004. The newest version is JADE 9. http://www.materialsdata.com/

  28. H. Izawa, S. Kikkawa, M. Koizumul, Ion exchange and dehydration of layered titanates, Na2Ti3O7 and K2Ti4O9. J. Phys. Chem. 86, 5023–5026 (1982)

    Article  CAS  Google Scholar 

  29. L. Qian, Z.-L. Du, S.-I. Yang, Z. Jin, Raman study of titania nanotube by soft chemical process. J. Mol. Struct. 749, 103–107 (2005)

    Article  CAS  Google Scholar 

  30. S.H. Byeon, S.O. Lee, H.J. Kim, Structure and raman spectra of layered titanium oxides. J. Solid. State. Chem. 130, 110–116 (1997)

    Article  CAS  Google Scholar 

  31. T. Sasaki, M. Watanabe, Osmotic swelling to exfoliation Exceptionally high degrees of hydration of a layered titanate. J. Am. Chem. Soc. 120(19), 4682–4689 (1998)

    Article  CAS  Google Scholar 

  32. Q. Chen, W. Zhou, G. Du, L.-M. Peng, Trititanate nanotubes made via a single alkali treatment. Adv. Mater. 14(17), 1208–1211 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge FCT, FEDER and FAME Network. FM is grateful to FCT for the fellowship SFRH/BD/23375/2005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Maria Vilarinho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maxim, F., Ferreira, P. & Vilarinho, P.M. Influence of the neutralization process on the preparation of titanate nanotubes by hydrothermal synthesis. J Porous Mater 18, 37–45 (2011). https://doi.org/10.1007/s10934-010-9354-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-010-9354-8

Keywords

Navigation