Skip to main content
Log in

Organic and carbon xerogels derived from sodium carbonate controlled polymerisation of aqueous phenol-formaldehyde solutions

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Porous carbons were synthesized from aqueous sodium carbonate catalysed solutions of the low cost precursors phenol and formaldehyde, applying ambient pressure drying without prior solvent exchange. Many of the samples are found to crack during drying, however, the resulting porous carbons show porosities up to 80%, specific surface areas up to 746 m2/g, and micropore volumes up to 0.29 cm3/g; the mesopore volume and external surface area of the derived carbons, however, is small indicating the dominance of macropores. An unusual gelation kinetic, i.e., the formation of precipitating flakes instead of the classical sol–gel-transition is observed; this is likely due to nuclei growth from a metastable state in the phase diagram and makes it challenging to reproduce samples with well defined properties. Nevertheless mechanically stable macroporous monoliths, that survive the ambient pressure drying without prior solvent exchange can be synthesized; the system presented, however, seems not to be suitable as base system for highly mesoporous carbon samples (aerogels, cryogels, xerogels) or large scale production of porous carbon materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. In most publications on gels derived from hydroxybenzols and aldehydes, the basic or acidic solutions added to control the reaction are denoted as “catalyst”; in fact using this denotation is strictly speaking not correct, because the pH-value changes as the polymerization reaction proceeds [34]. However, for convenience, we also denote the base or acid as “catalyst”.

  2. Source: material safety data sheets from Merck KGaA.

  3. Due to the fact, that the pH varies during the reaction, the P:C-ratio is the more suitable parameter to define the starting conditions. Indeed Na2CO3 is not a true “catalyst”.

References

  1. R.W. Pekala, J. Mater. Sci. 24, 3221 (1989)

    Article  CAS  Google Scholar 

  2. R.W. Pekala, F.M. Kong, J. Phys. 50, C433 (1989)

    Google Scholar 

  3. R.W. Pekala, C.T. Alviso, F.M. Kong, S.S. Hulsey, J. Non-Cryst. Solids 145, 90 (1992)

    Article  CAS  Google Scholar 

  4. T. Yamamoto, T. Nishimura, T. Suzuki, H. Tamon, Drying Technol. 19, 1319 (2001)

    Article  CAS  Google Scholar 

  5. A. Leonard, N. Job, S. Blacher, J.P. Pirard, M. Crine, W. Jomaa, Carbon 43, 1808 (2005)

    Article  CAS  Google Scholar 

  6. N. Job, F. Sabatier, J.P. Pirard, M. Crine, A. Leonard, Carbon 44, 2534 (2006)

    Article  CAS  Google Scholar 

  7. O. Czakkel, Microporous Mesoporous Mater. 86, 124 (2005)

    Article  CAS  Google Scholar 

  8. N. Job, A. Thery, R. Pirard, J. Marien, L. Kocon, J.N. Rouzaud et al, Carbon 43, 2481 (2005)

    Article  CAS  Google Scholar 

  9. W.C. Li, S.C. Guo, Carbon 38, 1520 (2000)

    Article  CAS  Google Scholar 

  10. W.C. Li, A.H. Lu, S.C. Guo, J. Colloid Interface Sci. 254, 153 (2002)

    Article  CAS  Google Scholar 

  11. W.C. Li, G. Reichenauer, J. Fricke, Carbon 40, 2955 (2002)

    Article  CAS  Google Scholar 

  12. J. Gross, C.T. Alviso, J.K. Nielsen, R.W. Pekala, Mater. Res. Soc. Symp. Proc. 431, 123 (1996)

    Article  CAS  Google Scholar 

  13. R.W. Pekala, J. Fricke, in Encyclopedia of Materials, vol. 7, ed. by J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E. Kramer, S. Mahajan (Elsevier, Amsterdam, 2001), pp. 6502–6506

    Google Scholar 

  14. R. Brandt, Sauer katalysierte, unterkritisch getrocknete Resorcin-Formaldehyd-Aerogele und daraus abgeleitete Kohlenstoff-Aerogele, Ph.D. Thesis (University Würzburg, 2005)

  15. G. Carlson, D. Lewis, K. McKinley, J. Richardson, T. Tillotson, J. Non-Cryst. Solids 186, 372 (1995)

    Article  CAS  Google Scholar 

  16. D.C. Wu, R.W. Fu, Z.Q. Sun, Z.Q. Yu, J. Non-Cryst. Solids 351, 915 (2005)

    Article  CAS  Google Scholar 

  17. S.R. Mukai, C. Tamitsuji, H. Nishihara, H. Tamon, Carbon 43, 2628 (2005)

    Article  CAS  Google Scholar 

  18. C. Scherdel, G. Reichenauer, Microporous Mesoporous Mater. 126, 133 (2009)

    Article  CAS  Google Scholar 

  19. R. Müller, in Kunststoff-Handbuch 10 Duroplaste, ed. by G.W. Becker, D. Braun (Hanser, München, 1988), p. 622

    Google Scholar 

  20. J. Falbe, M. Regitz, Römpp Chemie Lexikon (Thieme, Stuttgart, 1992)

    Google Scholar 

  21. A. Gardziella, L.A. Pilato, A. Knop, Phenolic Resins (Springer, Berlin, 2000), p. 4

    Google Scholar 

  22. S. Brunauer, P.H. Emmett, E. Teller, JACS 60, 309 (1938)

    Article  CAS  Google Scholar 

  23. J. Rouquerol, P. Llewellyn, F. Rouquerol, Stud. Surf. Sci. Catal. 160, 49 (2007)

    Article  CAS  Google Scholar 

  24. B.C. Lippens, J.H. De Boer, J. Catal. 4, 319 (1965)

    Article  CAS  Google Scholar 

  25. G. Goerigk, H.G. Haubold, O. Lyon, J.P. Simon, J. Appl. Crystallogr. 36, 425 (2003)

    Article  CAS  Google Scholar 

  26. P. Debye, H.R. Anderson, H. Brumberger, J. Appl. Phys. 28, 679 (1957)

    Article  CAS  Google Scholar 

  27. G. Reichenauer, Adsorption 11, 467 (2005)

    Article  Google Scholar 

  28. G. Porod, Colloid Polym. Sci. 124, 83 (1951)

    CAS  Google Scholar 

  29. C. Scherdel, Kohlenstoffmaterialien mit nanoskaliger Morphologie—Entwicklung neuartiger Syntheserouten, Ph.D. Thesis (University Würzburg, 2010)

  30. N. Job, R. Pirard, J. Marien, J.P. Pirard, Carbon 42, 619 (2004)

    Article  CAS  Google Scholar 

  31. E. Kumpinsky, Ind. Eng. Chem. Res. 34, 3096 (1995)

    Article  CAS  Google Scholar 

  32. B.B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freeman and Company, New York, 1982)

    Google Scholar 

  33. J. Livage, D. Roux, in Nanomaterials and Nanochemistry, ed. by C. Brechignac, P. Houdy, M. Lahmani (Springer, Berlin, 2007), pp. 383–394

    Chapter  Google Scholar 

  34. R.W. Pekala, D.W. Schaefer, Macromol. 26, 5487 (1993)

    Article  CAS  Google Scholar 

  35. R. Zhang, Y. Xu, Y.G. Lu, Z.H. Li, Q.H. Meng, K.X. Li et al., New Carbon Mater. 17, 31 (2002)

    Google Scholar 

  36. R. Zhang, W. Li, K.X. Li, C.X. Lu, L. Zhan, L.C. Ling, Microporous Mesoporous Mater. 72, 167 (2004)

    Article  CAS  Google Scholar 

  37. C.J. Gommes, A.P. Roberts, Phys. Rev. E 77, 041409 (2008). doi:10.1103/PhysRevE.77.041409

  38. G. Reichenauer, Stud. Surf. Sci. 160, 351 (2007)

    Article  CAS  Google Scholar 

  39. Y. Hanzawa, H. Hatori, N. Yoshizawa, Y. Yamada, Carbon 40, 575 (2002)

    Article  CAS  Google Scholar 

  40. N. Nishiyama, T. Zheng, Y. Yamane, Y. Egashira, K. Ueyama, Carbon 43, 269 (2005)

    Article  CAS  Google Scholar 

  41. N. Liu, S. Zhang, R. Fu, M.S. Dresselhaus, G. Dresselhaus, Carbon 44, 2430 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the German ministry of research and education (BMBF, FKZ 03X0016D). The authors thank Dr. Guenter Goerigk and Ulla Vainio, PhD from the HASYLAB for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Scherdel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scherdel, C., Gayer, R., Slawik, T. et al. Organic and carbon xerogels derived from sodium carbonate controlled polymerisation of aqueous phenol-formaldehyde solutions. J Porous Mater 18, 443–450 (2011). https://doi.org/10.1007/s10934-010-9396-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-010-9396-y

Keywords

Navigation