Skip to main content
Log in

Incorporation of highly dispersed aluminum into inner surfaces of supermicroporous silica using anionic surfactant

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Incorporation of aluminum on the inner surfaces of mesopores was carried out under hydrothermal conditions for synthesizing mesoporous silica using an anionic surfactant. The synthesis concept was based on ionic interactions between aluminum cations and anionic surfactants, with the latter as templates. We easily obtained aluminum-containing microporous silica with supermicropores. The results of pyridine adsorption and cumene cracking reactions strongly indicated that unlike the materials prepared by the previously reported post synthesis and direct synthesis methods, the larger amount of aluminum incorporated into the materials were effectively present on the inner surfaces of supermicropores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359, 710 (1992)

    Article  CAS  Google Scholar 

  2. T. Yanagisawa, T. Shimizu, K. Kuroda, C. Kato, Bull. Chem. Soc. Jpn. 63, 988 (1990)

    Article  CAS  Google Scholar 

  3. Q. Huo, R. Leon, P.M. Petroff, G.D. Stucky, Science 268, 1324 (1995)

    Article  CAS  Google Scholar 

  4. P.T. Tanev, M. Chibwe, T.J. Pinnavaia, Nature 368, 321 (1994)

    Article  CAS  Google Scholar 

  5. S.A. Bagshaw, E. Prouzet, T.J. Pinnavaia, Science 269, 1242 (1995)

    Article  Google Scholar 

  6. A. Tuel, S. Gontier, R. Teissier, Chem. Commun. 651, (1996)

  7. D.Z.R. Tian, W. Tong, J.Y. Wang, N.G. Duan, V.V. Krishman, S.L. Suib, Science 276, 926 (1997)

    Article  CAS  Google Scholar 

  8. Q. Zhang, Y. Wang, Y. Ohishi, T. Shishido, K. Takehira, J. Catal. 202, 308 (2001)

    Article  CAS  Google Scholar 

  9. Z. Zhang, J. Suo, X. Zhang, S. Li, Appl. Catal. A 179, 11 (1999)

    Article  CAS  Google Scholar 

  10. A. Sakthivel, S.E. Dapurkar, N.M. Gupta, S.K. Kulshreshtha, P. Selvam, Micropor. Mesopor. Mater. 65, 177 (2003)

    Article  CAS  Google Scholar 

  11. R. Mokaya, W. Jones, Z. Luan, M.D. Alba, J. Klinowski, Catal. Lett. 37, 113 (1996)

    Article  CAS  Google Scholar 

  12. S. Sumiya, Y. Oumi, T. Uozumi, T. Sano, J. Mater. Chem. 11, 1111 (2001)

    Article  CAS  Google Scholar 

  13. W.H. Zhang, J. Lu, B. Han, M. Li, J. Xiu, P. Ying, C. Li, Chem. Mater. 14, 3413 (2002)

    Article  CAS  Google Scholar 

  14. Z. Luan, J.Y. Bae, L. Kevan, Chem. Mater. 12, 3202 (2000)

    Article  CAS  Google Scholar 

  15. Z.E. Berrichi, L. Cherif, O. Orsen, J. Fraissard, J.P. Tessonnier, E. Vanhaecke, B. Louis, M.J. Ledoux, C.P. Huu, Appl. Catal. A 298, 194 (2006)

    Article  Google Scholar 

  16. C. Galacho, M.M.L.R. Carrott, P.J.M. Carrott, Micropor. Mesopor. Mater. 100, 312 (2007)

    Article  CAS  Google Scholar 

  17. M.A. Zanjanchi, M. Vaziri, Mater. Chem. Phys. 110, 61 (2008)

    Article  CAS  Google Scholar 

  18. M.G. Cazalillaa, J.M.M. Roblesa, A. Gurbanib, E.R. Castellona, A.J. Lopeza, J. Solid State Chem. 180, 1130 (2007)

    Article  Google Scholar 

  19. M. Xu, W. Wang, M. Seiler, A. Buchholz, M. Hunger, J. Phys. Chem. B 106, 3202 (2002)

    Article  CAS  Google Scholar 

  20. R. Luque, J.M. Campelo, D. Luna, J.M. Marinas, A.A. Romero, Micropor. Mesopor. Mater. 84, 11 (2005)

    Article  CAS  Google Scholar 

  21. H.M. Kao, C.C. Ting, S.W. Chao, J. Mol. Catal. A 235, 200 (2005)

    Article  CAS  Google Scholar 

  22. A. Corma, Chem. Rev. 97, 2373 (1997)

    Article  CAS  Google Scholar 

  23. F. Schüth, W. Schmidt, Adv. Mater. 14, 629 (2002)

    Article  Google Scholar 

  24. J.Y. Jing, C.P. Mehnert, M.S. Wong, Angew. Chem. Int. Ed. 38, 56 (1999)

    Article  Google Scholar 

  25. F. Schüth, Chem. Mater. 13, 3184 (2001)

    Article  Google Scholar 

  26. C.Y. Chen, S.Q. Xiao, M.E. Davis, Micropor. Mater. 4, 1 (1995)

    Article  Google Scholar 

  27. Q.S. Huo, D.I. Margolese, U. Ciesla, P.Y. Feng, T.E. Gier, P. Sieger, R. Leon, P.M. Petroff, F. Schüth, G.D. Stucky, Nature 368, 317 (1994)

    Article  CAS  Google Scholar 

  28. Q.S. Huo, D.I. Margolese, U. Ciesla, D. Demuth, P.Y. Feng, T.E. Gier, P. Sieger, A. Firouzi, B.F. Chelka, F. Schüth, G.D. Stucky, Chem. Mater. 6, 1176 (1994)

    Article  CAS  Google Scholar 

  29. T. Yokoi, H. Yoshitake, T. Tatsumi, Chem. Mater. 15, 4536 (2003)

    Article  CAS  Google Scholar 

  30. T. Yokoi, H. Yoshitake, T. Yamada, Y. Kubota, T. Tatsumi, J. Mater. Chem. 16, 1125 (2006)

    Article  CAS  Google Scholar 

  31. R. Mokaya, W. Jones, J. Catal. 153, 76 (1995)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuneji Sano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sumiya, S., Fujiwara, J., Oumi, Y. et al. Incorporation of highly dispersed aluminum into inner surfaces of supermicroporous silica using anionic surfactant. J Porous Mater 18, 493–500 (2011). https://doi.org/10.1007/s10934-010-9402-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-010-9402-4

Keywords

Navigation