Skip to main content
Log in

Porous organic and carbon xerogels derived from alkaline aqueous phenol–formaldehyde solutions

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Porous carbons were synthesized from the low cost precursors phenol and formaldehyde in aqueous solution, catalysed with NaOH. The xerogels were ambient pressure dried without prior solvent exchange. For an excess of formaldehyde, the resulting carbon xerogels show porosities up to 90%, with a predominant fraction of macroporosity, specific surface areas up to 768 m2/g and mesopore volumes up to 0.59 cm3/g. Small-angle X-ray scattering reveals fractal behaviour for many samples. Relevant sodium impurities up to 3–4 wt% in the organic and carbon samples cannot be avoided, even by washing of the samples. As possible reason for the high sodium content, the formation of crown ether like calix [6] arene is assumed. Overall, the sodium impurities detected confine the use of this system to applications, where higher ash contents are uncritical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Source: material safety data sheets from Merck KGaA.

  2. As the pH-value changes when the polymerization reaction proceeds [1], the base or acid used is not a true “catalyst”. However, for convenience, we also denote the base or acid as “catalyst”.

References

  1. R.W. Pekala, J. Mater. Sci. 24, 3221 (1989)

    Article  CAS  Google Scholar 

  2. R.W. Pekala, C.T. Alviso, F.M. Kong, S.S. Hulsey, J. Non-Cryst. Solids 145, 90 (1992)

    Article  CAS  Google Scholar 

  3. R.W. Pekala, F.M. Kong, J. Phys. 50, C433 (1989)

    Google Scholar 

  4. O. Czakkel, Microporous Mesoporous Mater. 86, 124 (2005)

    Article  CAS  Google Scholar 

  5. N. Job, F. Sabatier, J.P. Pirard, M. Crine, A. Leonard, Carbon 44, 2534 (2006)

    Article  CAS  Google Scholar 

  6. N. Job, A. Thery, R. Pirard, J. Marien, L. Kocon, J.N. Rouzaud et al., Carbon 43, 2481 (2005)

    Article  CAS  Google Scholar 

  7. A. Leonard, N. Job, S. Blacher, J.P. Pirard, M. Crine, W. Jomaa, Carbon 43, 1808 (2005)

    Article  CAS  Google Scholar 

  8. T. Yamamoto, T. Nishimura, T. Suzuki, H. Tamon, Dry. Technol. 19, 1319 (2001)

    Article  CAS  Google Scholar 

  9. J. Gross, C.T. Alviso, J.K. Nielsen, R.W. Pekala, Mater. Res. Soc. Symp. Proc. 431, 123 (1996)

    Article  CAS  Google Scholar 

  10. W.C. Li, S.C. Guo, Carbon 38, 1520 (2000)

    Article  CAS  Google Scholar 

  11. W.C. Li, A.H. Lu, S.C. Guo, J. Colloid Interface Sci. 254, 153 (2002)

    Article  CAS  Google Scholar 

  12. W.C. Li, G. Reichenauer, J. Fricke, Carbon 40, 2955 (2002)

    Article  CAS  Google Scholar 

  13. R.W. Pekala, J. Fricke, in Encyclopedia of Materials, vol. 7, ed. by J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E. Kramer, S. Mahajan (Elsevier, Amsterdam, 2001), pp. 6502–6506

    Chapter  Google Scholar 

  14. R. Brandt, Sauer katalysierte, unterkritisch getrocknete Resorcin-Formaldehyd-Aerogele und daraus abgeleitete Kohlenstoff-Aerogele, Ph.D. Thesis (University Würzburg, 2005)

  15. G. Carlson, D. Lewis, K. McKinley, J. Richardson, T. Tillotson, J. Non-Cryst. Solids 186, 372 (1995)

    Article  CAS  Google Scholar 

  16. D.C. Wu, R.W. Fu, Z.Q. Sun, Z.Q. Yu, J. Non-Cryst. Solids 351, 915 (2005)

    Article  CAS  Google Scholar 

  17. S.R. Mukai, C. Tamitsuji, H. Nishihara, H. Tamon, Carbon 43, 2628 (2005)

    Article  CAS  Google Scholar 

  18. C. Scherdel, R. Gayer, T. Slawik, G. Reichenauer, T. Scherb, J. Porous Mater. (2010). doi:10.1007/s10934-010-9396-y

  19. C. Scherdel, G. Reichenauer, Microporous Mesoporous Mater. 126, 133 (2009)

    Article  CAS  Google Scholar 

  20. R. Müller, in Kunststoff-Handbuch 10 Duroplaste, ed. by G.W. Becker, D. Braun (Hanser, München, 1988), p. 622

    Google Scholar 

  21. J. Falbe, M. Regitz, Römpp Chemie Lexikon (Thieme, Stuttgart, 1992)

    Google Scholar 

  22. A. Gardziella, L.A. Pilato, A. Knop, Phenolic Resins (Springer, Berlin, 2000)

    Google Scholar 

  23. D.R. Lide, Handbook of Chemistry and Physics, 74th edn. (CRC Press, Boca Raton, 1994), pp. 5-90–5-92

    Google Scholar 

  24. S. Brunauer, P.H. Emmett, E. Teller, JACS 60, 309 (1938)

    Article  CAS  Google Scholar 

  25. J. Rouquerol, P. Llewellyn, F. Rouquerol, Stud. Surf. Sci. Catal. 160, 49 (2007)

    Article  CAS  Google Scholar 

  26. W.D. Harkins, G. Jura, JACS 66, 1362 (1944)

    Article  CAS  Google Scholar 

  27. B.C. Lippens, J.H. De Boer, J. Catal. 4, 319 (1965)

    Article  CAS  Google Scholar 

  28. E.P. Barrett, L.G. Joyner, P.P. Halenda, JACS 73, 373 (1951)

    Article  CAS  Google Scholar 

  29. G. Goerigk, H.G. Haubold, O. Lyon, J.P. Simon, J. Appl. Crystallogr. 36, 425 (2003)

    Article  CAS  Google Scholar 

  30. P. Scherrer, Nachr. Ges. Wiss. Göttingen 2, 98 (1918)

    Google Scholar 

  31. K. Kinoshita, CarbonElectrochemical and Physicochemical Properties, (Wiley, New York, 1988), chapter 2.1

  32. T. Ko, Polym. Comp. 21, 745 (2000)

    Article  CAS  Google Scholar 

  33. A. Gardziella, in Kunststoff-Handbuch 10 Duroplaste, ed. by G.W. Becker, D. Braun (Hanser, München, 1988), chapter 1.2

  34. M.F. Grenier-Loustalot, S. Larroque, P. Grenier, D. Bedel, Polym. 37, 939 (1996)

    Article  CAS  Google Scholar 

  35. D.C. Wu, R.W. Fu, S.T. Zhang, M.S. Dresselhaus, G. Dresselhaus, J. Non-Cryst. Solids 336, 26 (2004)

    Article  CAS  Google Scholar 

  36. S. Cannizzaro, Justus Liebigs Ann. Chem. 88, 129 (1853)

    Article  CAS  Google Scholar 

  37. N. Nishiyama, T. Zheng, Y. Yamane, Y. Egashira, K. Ueyama, Carbon 43, 269 (2005)

    Article  CAS  Google Scholar 

  38. R. Brandt, J. Fricke, J. Non-Cryst. Solids 350, 131 (2004)

    Article  CAS  Google Scholar 

  39. R. Brandt, R. Petricevic, H. Probstle, J. Fricke, J. Porous. Mater. 10, 171 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the German ministry of research and education (BMBF, FKZ 03X0016). The authors thank Dr. Guenter Goerigk and Ulla Vainio, PhD from the HASYLAB for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Scherdel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scherdel, C., Gayer, R. & Reichenauer, G. Porous organic and carbon xerogels derived from alkaline aqueous phenol–formaldehyde solutions. J Porous Mater 19, 351–360 (2012). https://doi.org/10.1007/s10934-011-9481-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-011-9481-x

Keywords

Navigation