Skip to main content

Advertisement

Log in

Nanoporous rice husk derived carbon for gas storage and high performance electrochemical energy storage

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

We report on the gas storage behaviour and electrochemical charge storage properties of high surface area activated nanoporous carbon obtained from rice husk through low temperature chemical activation approach. Rice husk derived porous carbon (RHDPC) exhibits varying porous characteristics upon activation at different temperatures and we observed high gas uptake and efficient energy storage properties for nanoporous carbon materials activated even at a moderate activation temperature of 500 °C. Various experimental techniques including Fourier transform-infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, high resolution transmission electron microscopy and pore size analyser are employed to characterise the samples. Detailed studies on gas adsorption behaviour of CO2, H2 and CH4 on RHDPCs have been performed at different temperatures using a volumetric gas analyser. High adsorption capacities of ~9.4 mmol g−1 (298 K, 20 bar), 1.8 wt% (77 K, 10 bar) and ~5 mmol g−1 (298 K, 40 bar) were obtained respectively for CO2, H2 and CH4, superior to many other carbon based physical adsorbents reported so far. In addition, these nanoporous carbon materials exhibit good electrochemical performance as supercapacitor electrodes and a maximum specific capacitance of 112 F g−1 has been obtained using aqueous 1 M Na2SO4 as electrolyte. Our studies thus demonstrate that nanoporous carbon with high porosity and surface area, obtained through an efficient approach, can act as effective materials for gas storage and electrochemical energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.E. Morris, P.S. Wheatley, Angew. Chem. Int. Ed. 47, 4966–4981 (2008)

    Article  CAS  Google Scholar 

  2. M.E. Davis, Nature 417, 813–821 (2002)

    Article  CAS  Google Scholar 

  3. P. Simon, Y. Gogotsi, Nat. Mater. 7, 845–854 (2008)

    Article  CAS  Google Scholar 

  4. J.L.C. Rowsell, O.M. Yaghi, Micropor. Mesopor. Mat. 73, 3–14 (2004)

    Article  CAS  Google Scholar 

  5. G. Ferey, Chem. Soc. Rev. 37, 191–214 (2008)

    Article  CAS  Google Scholar 

  6. S. Manocha, Sadhana 28, 335–348 (2003)

    Article  CAS  Google Scholar 

  7. H. Jiang, P.S. Lee, C. Li, Energy Environ. Sci. 6, 41–53 (2013)

    Article  CAS  Google Scholar 

  8. A. Stein, Adv. Mater. 15, 763–775 (2003)

    Article  CAS  Google Scholar 

  9. J. Lee, J. Kim, T. Hyeon, Adv. Mater. 18, 2073–2094 (2006)

    Article  CAS  Google Scholar 

  10. A.H. Lu, F. Schüth, Adv. Mater. 18, 1793–1805 (2006)

    Article  CAS  Google Scholar 

  11. Y. Wang, A.S. Angelatos, F. Caruso, Chem. Mater. 20, 848–858 (2007)

    Article  Google Scholar 

  12. Q. Wang, J. Luo, Z. Zhong, A. Borgna, Energy Environ. Sci. 4, 42–55 (2011)

    Article  CAS  Google Scholar 

  13. D.M. D’Alessandro, B. Smit, J.R. Long, Angew. Chem. Int. Ed. 49, 6058–6082 (2010)

    Article  Google Scholar 

  14. L. Schlapbach, A. Zuttel, Nature 414, 353–358 (2001)

    Article  CAS  Google Scholar 

  15. B.E. Conway, Electrochemical supercapacitors : scientific fundementals and technological applications (Kluwer Academic Plenium Publisher, New York, 1999)

    Book  Google Scholar 

  16. P.G. Bruce, B. Scrosati, J.-M. Tarascon, Angew. Chem. Int. Ed. 47, 2930–2946 (2008)

    Article  CAS  Google Scholar 

  17. Y. Zhai, Y. Dou, D. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai, Adv. Mater. 23, 4828–4850 (2011)

    Article  CAS  Google Scholar 

  18. G. Srinivas, J. Burress, T. Yildirim, Energy Environ. Sci. 5, 6453–6459 (2012)

    Article  CAS  Google Scholar 

  19. P.M. Sudeep, T.N. Narayanan, A. Ganesan, M.M. Shaijumon, H. Yang, S. Ozden, P.K. Patra, M. Pasquali, R. Vajtai, S. Ganguli, A.K. Roy, M.R. Anantharaman, P.M. Ajayan, ACS Nano 7, 7034–7040 (2013)

    Article  CAS  Google Scholar 

  20. M. Sevilla, A.B. Fuertes, Energy Environ. Sci. 4, 1765–1771 (2011)

    Article  CAS  Google Scholar 

  21. G. Srinivas, V. Krungleviciute, Z.-X. Guo, T. Yildirim, Energy Environ. Sci. 7, 335–342 (2014)

    Article  CAS  Google Scholar 

  22. A. Stein, Z. Wang, M.A. Fierke, Adv. Mater. 21, 265–293 (2009)

    Article  CAS  Google Scholar 

  23. H. Marsh, F. Rodriquez-Reinoso, Activated carbon (Elsevier, London, 2006)

    Google Scholar 

  24. R.J. White, V. Budarin, R. Luque, J.H. Clark, D.J. Macquarrie, Chem. Soc. Rev. 38, 3401–3418 (2009)

    Article  CAS  Google Scholar 

  25. Y. Gogotsi, A. Nikitin, H. Ye, W. Zhou, J.E. Fischer, B. Yi, H.C. Foley, M.W. Barsoum, Nat. Mater. 2, 591–594 (2003)

    Article  CAS  Google Scholar 

  26. O. Ioannidou, A. Zabaniotou, Renew. Sust. Energ. Rev. 11, 1966–2005 (2007)

    Article  CAS  Google Scholar 

  27. M. Olivares-Marín, M.M. Maroto-Valer, Greenhouse gas. Sci. Technol. 2, 20–35 (2012)

    Google Scholar 

  28. A. Aworn, P. Thiravetyan, W. Nakbanpote, J. Anal. Appl. Pyrol. 82, 279–285 (2008)

    Article  CAS  Google Scholar 

  29. L. Zhang, F. Zhang, X. Yang, G. Long, Y. Wu, T. Zhang, K. Leng, Y. Huang, Y. Ma, A. Yu, Y. Chen, Sci. Rep. 3, 1408 (2013)

  30. L. Wei, G. Yushin, Nano Energy 1, 552–565 (2012)

    Article  CAS  Google Scholar 

  31. J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Science 313, 1760–1763 (2006)

    Article  CAS  Google Scholar 

  32. M. Molina-Sabio, F. Rodríguez-Reinoso, Colloid Surf. A 241, 15–25 (2004)

    Article  CAS  Google Scholar 

  33. Y. Chen, Y. Zhu, Z. Wang, Y. Li, L. Wang, L. Ding, X. Gao, Y. Ma, Y. Guo, Adv. Colloid Inter. Sci. 163, 39–52 (2011)

    Article  CAS  Google Scholar 

  34. L. Wang, Y. Guo, B. Zou, C. Rong, X. Ma, Y. Qu, Y. Li, Z. Wang, Bioresour. Technol. 102, 1947–1950 (2011)

    Article  CAS  Google Scholar 

  35. K.Y. Foo, B.H. Hameed, Adv. Colloid Inter. Sci. 152, 39–47 (2009)

    Article  CAS  Google Scholar 

  36. D.S. Jung, M.-H. Ryou, Y.J. Sung, S.B. Park, J.W. Choi, Proc. Natl. Acad. of Sci. USA 110, 12229–12234 (2013)

    Article  CAS  Google Scholar 

  37. N. Liu, K. Huo, M.T. McDowell, J. Zhao, Y. Cui, Sci. Rep. 3, 1919 (2013)

  38. X. Song, Y. Zhang, C. Chang, Ind. Eng. Chem. Res. 51, 15075–15081 (2012)

    Article  CAS  Google Scholar 

  39. M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cancado, A. Jorio, R. Saito, Phys. Chem. Chem. Phys. 9, 1276–1290 (2007)

    Article  CAS  Google Scholar 

  40. K.W. Sing, J. Porous Mat. 2, 5–8 (1995)

    Article  CAS  Google Scholar 

  41. K. Sing, Colloid. Surf. A 187–188, 3–9 (2001)

    Article  Google Scholar 

  42. M. Thommes, Chem. Ing. Tech. 82, 1059–1073 (2010)

    Article  CAS  Google Scholar 

  43. L.J. Kennedy, J.J. Vijaya, G. Sekaran, Ind. Eng. Chem. Res. 43, 1832–1838 (2004)

    Article  CAS  Google Scholar 

  44. Y.P. Guo, K.F. Yu, Z.C. Wang, H.D. Xu, Carbon 41, 1645–1648 (2003)

    Article  CAS  Google Scholar 

  45. G.-P. Hao, W.-C. Li, A.-H. Lu, J. Mater. Chem. 21, 6447–6451 (2011)

    Article  CAS  Google Scholar 

  46. A. Samanta, A. Zhao, G.K.H. Shimizu, P. Sarkar, R. Gupta, Ind. Eng. Chem. Res. 51, 1438–1463 (2011)

    Article  Google Scholar 

  47. S. Himeno, T. Komatsu, S. Fujita, J. Chem. Eng. Data 50, 369–376 (2005)

    Article  CAS  Google Scholar 

  48. G. Srinivas, J.W. Burress, J. Ford, T. Yildirim, J. Mater. Chem. 21, 11323–11329 (2011)

    Article  CAS  Google Scholar 

  49. X. Hu, M. Radosz, K.A. Cychosz, M. Thommes, Environ. Sci. Technol. 45, 7068–7074 (2011)

    Article  CAS  Google Scholar 

  50. J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque, M. Chesneau, J. Power Sources 101, 109–116 (2001)

    Article  CAS  Google Scholar 

  51. D. Qu, H. Shi, J. Power Sources 74, 99–107 (1998)

    Article  CAS  Google Scholar 

  52. S. Kumagai, M. Sato, D. Tashima, Electrochim. Acta 114, 617–626 (2013)

    Article  CAS  Google Scholar 

  53. J.S. Huang, B.G. Sumpter, V. Meunier, Chem. Eur. J. 14, 6614–6626 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

AG acknowledges UGC, Govt. of India for the financial support. The authors thank Prof. S Ramaprabhu, Head, Alternative Energy and Nanotechnology Laboratory (AFNL), Nano-Functional Materials Technology Centre, Department of Physics, IIT Madras, Chennai, INDIA for extending the facility to carry out BET and porosity measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manikoth M. Shaijumon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4395 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganesan, A., Mukherjee, R., Raj, J. et al. Nanoporous rice husk derived carbon for gas storage and high performance electrochemical energy storage. J Porous Mater 21, 839–847 (2014). https://doi.org/10.1007/s10934-014-9833-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-014-9833-4

Keywords

Navigation