Skip to main content
Log in

Optimization of microwave-assisted synthesis of cyclodextrin nanosponges using response surface methodology

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The reaction of polymerization of cyclodextrins with suitable polyfunctional agents leads to highly cross linked porous structures, referred to as cyclodextrin nanosponges. The conventional heating approach for the synthesis of nanosponges can lead to nonuniform reaction conditions caused by sharp thermal gradients in the bulk solution. In this work, we present a facile method for the synthesis of cyclodextrin nanosponges by microwave irradiation with significant reduction in reaction time. Response surface methodology and Box–Behnken design were used for the optimization of the process parameters including microwave power level (A), reaction time (B) and stirring speed (C). Two dependent variables practical yield and particle size were measured as responses. Mathematical equations and response surface plots were used to relate the dependent variables with independent variables. The optimization model predicted a yield of 96.5287 % and particle size of about 152.355 nm with A, B and C levels of 508.22, 83.55 and 1,471.55 respectively. The observed responses of the optimized process were in close agreement with the predicted values. Three confirmation batches of cyclodextrin nanosponges were synthesized under optimized conditions. The Fourier transformed infrared spectra of nanosponges showed a characteristic peak of the carbonate group at around 1,750 cm−1 which confirms the formation of nanosponges. TGA revealed the stability of obtained nanosponges up to 325 °C. The nanosponges obtained by microwave irradiation exhibited a higher degree of crystallinity. Dimension of the crystal lattice was found to be equal to 0.70 nm. TEM image confirmed the spherical shape and the particle size range of about 153 nm. Compared to conventional heating method, microwave method resulted in four folds reduction in reaction time and provided with particles of homogeneous size distribution and uniform crystallinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. F. Trotta, M. Zanetti, R. Cavalli, Beilstein J. Org. Chem. 8, 2091 (2012)

    Article  CAS  Google Scholar 

  2. R. Cavalli, F. Trotta, W. Tumiatti, J. Incl. Phenom. Macrocycl. Chem. 56, 209 (2006)

    Article  CAS  Google Scholar 

  3. F. Castiglione, V. Crupi, D. Majolino, A. Mele, B. Rossi, F. Trotta, V. Venuti, J. Phys. Chem. B. 116, 7952 (2012)

    Article  CAS  Google Scholar 

  4. C. Longo, G. Gambara, V. Espina, A. Luchini, B. Bishop, A.S. Patanarut, E.F. Petricoin 3rd, F. Beretti, B. Ferrari, E. Garaci, A. De Pol, G. Pellacani, L.A. Liotta, Exp. Dermatol. 20, 29 (2011)

    Article  Google Scholar 

  5. S. Renuka, P. Kamla, Pharm. Dev. Technol. 16, 367 (2011)

    Article  Google Scholar 

  6. A. Baglieri, M. Nègre, P. Cavallaro, F. Trotta, C. Abbate, M. Gennari, Organo-clays and nanosponges for acquifer Bioremediation: adsorption and degradation of Triclopyr. (GeoMed—4th International Conference on Medical Geology, 2011), http://www.cprm.gov.br/pgagem/bari_italia/10.pdf. Accessed 25 Jan 2014

  7. B.B. Mamba, R.W. Krause, T.J. Malefetse, G. Gericke, S.P. Sithole, J. Water Supply Res. 34, 299 (2008)

    Google Scholar 

  8. B. Boscolo, F. Trotta, E. Ghibaudi, J. Mol. Catal. B Enzym. 62, 155 (2010)

    Article  CAS  Google Scholar 

  9. L. Seglie, K. Martina, M. Devecchi, C. Roggero, F. Trotta, V. Scariot, Plant Growth Regul. 65, 505 (2011)

    Article  CAS  Google Scholar 

  10. R. Cavalli, A.K. Akhtera, A. Bisazzaa, P. Giustettoa, F. Trotta, P. Vavia, Int. J. Pharm. 402, 254 (2010)

    Article  CAS  Google Scholar 

  11. J. Alongi, M. Poskovic, A. Frache, F. Trotta, Polym. Degrad. Stabil. 95, 2093 (2010)

    Article  CAS  Google Scholar 

  12. J. Alongi, M. Poskovic, A. Frache, F. Trotta, Carbohydr. Polym. 86, 127 (2011)

    Article  CAS  Google Scholar 

  13. V. Crupi, A. Fontana, M. Giarola, D. Majolino, G. Mariotto, A. Mele, L. Melone, C. Punta, B. Rossi, F. Trotta, V. Venuti, J. Raman Spectrosc. 44, 1457 (2013)

    Article  CAS  Google Scholar 

  14. S. Swaminathan, L. Pastero, L. Serpe, F. Trotta, P. Vavia, D. Aquilano, M. Trotta, G. Zara, R. Cavalli, Eur. J. Pharm. Biopharm. 74, 193 (2010)

    Article  CAS  Google Scholar 

  15. S. Swaminathan, P.R. Vavia, F. Trotta, R. Cavalli, S. Tumbiolo, L. Bertinetti, A. Coluccia, J. Incl. Phenom. Macrocycl. Chem. 76, 201 (2013)

    Article  CAS  Google Scholar 

  16. F. Trotta, R. Cavalli, W. Tumiatti, O. Zerbinati, C. Roggero, R. Vallero, European Patent EP 1 786 841 B1(2009)

  17. S. Komarneni, R. Roy, Mater. Lett. 3, 165 (1985)

    Article  CAS  Google Scholar 

  18. S. Komarneni, R. Roy, Q.H. Li, Mater. Res. Bull. 27, 1393 (1992)

    Article  CAS  Google Scholar 

  19. S.H. Jhung, J. Lee, J. Chang, Bull. Korean Chem. Soc. 26, 880 (2005)

    Article  CAS  Google Scholar 

  20. H. Su, H. Xu, S. Gao, J.D. Dixon, Z.P. Aguilar, A.Y. Wang, J. Xu, J. Wang, Nanoscale Res. Lett. 5, 625 (2010)

    Article  CAS  Google Scholar 

  21. R. England, Microwave Synthesis: a new wave of synthetic organic chemistry. (Labplus International, 2003), http://pns.phosworks.se/general/graphics/599.pdf. Accessed 10 Jan 2014

  22. C. Leonelli, W. Lojkowskil, Main development directions in the application of microwave irradiation to the synthesis of nanopowders. (Chemistry Today, 2007), http://mms.technologynetworks.net/articles/leonelli.pdf. Accessed 12 Feb 2014

  23. N. Dahal, S. Garcia, J. Zhou, S.M. Humphrey, ACS Nano 6, 9433 (2012)

    Article  CAS  Google Scholar 

  24. A.B. Panda, G. Glaspell, M.S. El-Shall, J. Phys. Chem. C 111, 1861 (2007)

    Article  CAS  Google Scholar 

  25. R. Maa, P. Zhoua, H. Zhana, C. Chena, Y. He, Optics Commun. 291, 476 (2013)

    Article  Google Scholar 

  26. S. Selvamuthukumar, S. Anandam, K. Kannan, R. Manavalan, J. Pharm. Pharm. Sci. 15, 103 (2012)

    Google Scholar 

  27. Q. Zhang, X. Tian, G. Du, Q. Pan, Y. Wang, X. Zhang, J Chem. 505460, 1 (2013)

    Google Scholar 

  28. A.M. Hamam, J. Appl. Sci. Res. 5, 1772 (2009)

    Google Scholar 

  29. R.Z. Ahmed, G. Patil, Z. Zaheer, Drug Dev. Ind. Pharm. 39, 1263 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are very much grateful to UGC-SAP-DRS–PHASE I, New Delhi, India for providing the facilities to carry out this work. We would like to thank Prof. K. Venu Gopal Reddy (Director, Central Facilities for Research and Development, Osmania University, Hyderabad) for assistance with FTIR analysis and Mr. Rajender (Centre for Nano Science and Technology, Jawaharlal Nehru Technological University, Hyderabad) for technical support with the XRD and TEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subramanian Selvamuthukumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anandam, S., Selvamuthukumar, S. Optimization of microwave-assisted synthesis of cyclodextrin nanosponges using response surface methodology. J Porous Mater 21, 1015–1023 (2014). https://doi.org/10.1007/s10934-014-9851-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-014-9851-2

Keywords

Navigation