Skip to main content
Log in

Highly efficient photocatalytic degradation of methylene blue using carbonaceous WO3/TiO2 composites

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Recent improvements in the performance of photocatalysts made it possible to tackle pollution through environment friendly methods. This study investigates the modification of the photocatalytic activity of TiO2 by employing WO3 and conductive polymers, namely, polyaniline (Pani) and polypyrrole (Ppy). Basing on our previous improvement of TiO2 using a conductive polymer and activated carbon (AC), this study determines the activated carbon forms of TiO2. The prepared composites are characterized using X-ray powder diffraction, transmission electron microscopy, Fourier transform infrared, thermogravimetric analysis, Brunauer–Emmet–Teller, and UV–Vis spectroscopy. The specific surface area of the mesoporous composites is as follows: WO3/TiO2·AC (Pani) > WO3/TiO2·AC (Ppy) > WO3/TiO2·Pani > WO3/TiO2·Ppy (127 > 98 > 68 > 44 m2 g−1), which exhibited a similar trend to the photocatalytic performances (100 > 95 > 91 > 72 % conversion rate). This result could be attributed to higher porosity, surge of charge separation, and photo-responding range extension induced by the synergistic effect of WO3, conducting polymers, and TiO2 in the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P.R. Gogate, A.B. Pandit, Adv. Environ. Res. 8, 501–551 (2004)

    Article  CAS  Google Scholar 

  2. W. Tang, Z. Zhang, H. An, M. Quintana, D. Torres, Environ. Technol. 18, 1–12 (1997)

    Article  CAS  Google Scholar 

  3. Z.-D. Meng, K.-Y. Cho, W.-C. Oh, Asian J. Chem. 23, 847–851 (2011)

    CAS  Google Scholar 

  4. M. Tekbaş, H.C. Yatmaz, N. Bektaş, Microporous Mesoporous Mater. 115, 594–602 (2008)

    Article  Google Scholar 

  5. J.M. Poyatos, M.M. Muñio, M.C. Almecija, J.C. Torres, E. Hontoria, F. Osorio, Water Air Soil Pollut. 205, 187–204 (2010)

    Article  CAS  Google Scholar 

  6. Q. Lv, G. Li, H. Sun, L. Kong, H. Lu, X. Gao, Microporous Mesoporous Mater. 186, 7–13 (2014)

    Article  CAS  Google Scholar 

  7. W. Liu, A.G.L. Borthwick, X. Li, J. Ni, Microporous Mesoporous Mater. 186, 168–175 (2014)

    Article  CAS  Google Scholar 

  8. A. Fujishima, Nature 238, 37–38 (1972)

    Article  CAS  Google Scholar 

  9. S.N. Frank, A.J. Bard, J. Phys. Chem. 81, 1484–1488 (1977)

    Article  CAS  Google Scholar 

  10. T. Inoue, A. Fujishima, S. Konishi, K. Honda, Nature 277, 637–638 (1979)

    Article  CAS  Google Scholar 

  11. A.O. Ibhadon, P. Fitzpatrick, Catalysts 3, 189–218 (2013)

    Article  CAS  Google Scholar 

  12. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269–271 (2001)

    Article  CAS  Google Scholar 

  13. Z.A. Che Ramli, N. Asim, W.N.R.W. Isahak, Z. Emdadi, N. Ahmad-Ludin, M.A. Yarmo, K. Sopian, Sci. World J. 2014, 8 (2014)

    Article  Google Scholar 

  14. Z.-D. Meng, L. Zhu, J.-G. Choi, C.-Y. Park, W.-C. Oh, Nanoscale Res. Lett. 6, 1–11 (2011)

    Article  Google Scholar 

  15. T.J. Brooms, M.S. Onyango, A. Ochieng, in International Conference on Chemical, Integrated Waste Management & Environmental Engineering, Planetary Scientific Research Center, Johannesburg, 2014, pp. 124–430

  16. N. Asim, S. Radiman, M.A. Yarmo, Am. J. Appl. Sci. 6, 1422–1426 (2009)

    Google Scholar 

  17. J. Zhu, S. Wei, L. Zhang, Y. Mao, J. Ryu, P. Mavinakuli, A.B. Karki, D.P. Young, Z. Guo, J. Phys. Chem. C 114, 16335–16342 (2010)

    Article  CAS  Google Scholar 

  18. S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60, 309–319 (1938)

    Article  CAS  Google Scholar 

  19. E.P. Barrett, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc. 73, 373–380 (1951)

    Article  CAS  Google Scholar 

  20. J. Ovenstone, J. Mater. Sci. 36, 1325–1329 (2001)

    Article  CAS  Google Scholar 

  21. J. Moon, H. Takagi, Y. Fujishiro, M. Awano, J. Mater. Sci. 36, 949–955 (2001)

    Article  CAS  Google Scholar 

  22. M. Toyoda, Y. Nanbu, Y. Nakazawa, M. Hirano, M. Inagaki, Appl. Catal. B 49, 227–232 (2004)

    Article  CAS  Google Scholar 

  23. A. Elsayed, M.M. Eldin, A. Elsyed, A.A. Elazm, E. Younes, H. Motaweh, Int. J. Electrochem. Sci. 6, 206–221 (2011)

    CAS  Google Scholar 

  24. J. Deng, X. Ding, W. Zhang, Y. Peng, J. Wang, X. Long, P. Li, A.S.C. Chan, Polymer 43, 2179–2184 (2002)

    Article  CAS  Google Scholar 

  25. N. Asim, S. Radiman, M.A.B. Yarmo, Mater. Lett. 62, 1044–1047 (2008)

    Article  CAS  Google Scholar 

  26. K.B. Ghoreishi, M.A. Yarmo, N.M. Nordin, M.W. Samsudin, J. Chem. 2013, 264832 (2013). doi:10.1155/2013/264832

  27. A. Olad, S. Behboudi, A.A. Entezami, Bull. Mater. Sci. 35, 801–809 (2012)

    Article  CAS  Google Scholar 

  28. G. Liu, T. Wu, J. Zhao, H. Hidaka, N. Serpone, Environ. Sci. Technol. 33, 2081–2087 (1999)

    Article  CAS  Google Scholar 

  29. Z. Yu, S.S. Chuang, J. Phys. Chem. C 111, 13813–13820 (2007)

    Article  CAS  Google Scholar 

  30. R. Mohamed, I. Mkhalid, E. Baeissa, M. Al-Rayyani, J. Nanotechnol. 2012, 5 (2012)

    Google Scholar 

  31. Y. Li, S. Zhang, Q. Yu, W. Yin, Appl. Surf. Sci. 253, 9254–9258 (2007)

    Article  CAS  Google Scholar 

  32. X. Wang, Z. Hu, Y. Chen, G. Zhao, Y. Liu, Z. Wen, Appl. Surf. Sci. 255, 3953–3958 (2009)

    Article  CAS  Google Scholar 

  33. D. Mahanta, G. Madras, S. Radhakrishnan, S. Patil, J. Phys. Chem. B 112, 10153–10157 (2008)

    Article  CAS  Google Scholar 

  34. S.A.K. Leghari, S. Sajjad, F. Chen, J. Zhang, Chem. Eng. J. 166, 906–915 (2011)

    Article  CAS  Google Scholar 

  35. H. Yang, R. Shi, K. Zhang, Y. Hu, A. Tang, X. Li, J. Alloy. Compd. 398, 200–202 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of the work by the Universiti Kebangsaan Malaysia for funding this project under research Grant: Dana Impak Perdana (DLP-2013-015) and FRGS/1/2012/TK07/UKM/3/4 from Ministry of Higher education (MOHE) Malaysia and Centre of Research and Innovation management (CRIM) UKM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilofar Asim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghoreishi, K.B., Asim, N., Che Ramli, Z.A. et al. Highly efficient photocatalytic degradation of methylene blue using carbonaceous WO3/TiO2 composites. J Porous Mater 23, 629–637 (2016). https://doi.org/10.1007/s10934-015-0117-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-015-0117-4

Keywords

Navigation