Skip to main content
Log in

Effect of synthesis highly ordered TiO2 nanotube arrays with enhanced photocatalytic properties by time, electrolytic voltage, heating temperature and Polyvinyl pyrrolidone

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Highly ordered TiO2 nanotube arrays were prepared by anodization method with doped Polyvinyl pyrrolidone (PVP) addition. The as-prepared samples were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and transmission electron microscopy. The results suggested that TiO2 nanotubes arrays modified by 0.10 wt% PVP were better uniform and more highly ordered than that of pure TiO2. The average inner diameter and the tube length of TiO2 nanotubes were extended approximately 77 nm and 5.21 μm, respectively. Meanwhile, the optimum synthesis conditions (40 V, 4 h and 450 °C) were determined by SEM and XRD. In addition, the photocatalytic activity of the as-prepared samples was investigated for the degradation of RhB under UV-lamp irradiation. The results showed that almost 100 % of RhB was degradation within 80 min by the as-prepared nanotubes in the optimum synthesis conditions. It was indicated that the photocatalytic activity of the as-prepared nanotubes was improved greatly due to their well morphology, enhanced UV-light absorption property and electron transmission ability. In general, this study could provide a principle method to synthesize TiO2 nanotube arrays with enhanced photocatalytic activity and improved microstructure by anodization process with PVP addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.M. Teh, A.R. Mohamed, J. Alloys Compd. 509, 1648 (2011)

    Article  CAS  Google Scholar 

  2. M. Enachi, M. Stevens-Kalceff, I. Tiginyanu, V. Ursaki, Mater. Lett. 64, 2155 (2010)

    Article  CAS  Google Scholar 

  3. S. Yoriya, M. Paulose, O.K. Varghese, G.K. Mor, C.A. Grimes, J. Phys. Chem. C 111, 13770 (2007)

    Article  CAS  Google Scholar 

  4. A. Matsuda, S. Sreekantan, W. Krengvirat, J. Am. Ceram. Soc. 1, 203 (2013)

    Article  Google Scholar 

  5. Z. Yang, Y. Huang, B. Dong, H.-L. Li, J. Solid State Chem. 178, 1157 (2005)

    Article  CAS  Google Scholar 

  6. T.A. Egerton, M. Janus, A.W. Morawski, Chemosphere 63, 1203 (2006)

    Article  CAS  Google Scholar 

  7. C. He, X.Z. Li, N. Graham, Y. Wang, Appl. Catal. A 2006(305), 54–63 (2006)

    Article  Google Scholar 

  8. Y. Tang, J. Tao, Y. Zhang, T. Wu, H. Tao, Z. Bao, Acta Phys. Chim. Sin. 24, 2191 (2008)

    Article  CAS  Google Scholar 

  9. X. Zeng, Y.X. Gan, E. Clark, L. Su, J. Alloys Compd. 509, 221 (2011)

    Article  Google Scholar 

  10. E. Casbeer, V.K. Sharma, X.-Z. Li, Sep. Purif. Technol. 87, 1 (2012)

    Article  CAS  Google Scholar 

  11. H. Dang, X. Dong, Y. Dong, Y. Zhang, S. Hampshire, Int. J. Hydrogen Energy 38, 2126 (2013)

    Article  CAS  Google Scholar 

  12. Y.K. Lai, J.Y. Huang, H.F. Zhang, V.P. Subramaniam, Y.X. Tang, D.-G. Gong, L. Sundar, L. Sun, Z. Chen, C.J. Lin, J. Hazard. Mater. 184, 855 (2010)

    Article  CAS  Google Scholar 

  13. H. Li, L. Cao, W. Liu, G. Su, B. Dong, Ceram. Int. 38, 5791 (2012)

    Article  CAS  Google Scholar 

  14. K. Kumar, M. Chitkara, I. Singh Sandhu, D. Mehta, S. Kumar, Mater. Sci. Semicond. Process. 30, 142 (2015)

    Article  CAS  Google Scholar 

  15. K.-S. Chou, Y.-S. Lai, Mater. Chem. Phys. 83, 82 (2004)

    Article  CAS  Google Scholar 

  16. M.H. Jung, K.C. Ko, J.Y. Lee, J. Phys. Chem. C 31, 118 (2014)

    Google Scholar 

  17. L. Sang, J. Zhang, Y. Zhang, Y. Zhao, J. Lin, SPIE 95600, 95609 (2015)

    Google Scholar 

  18. F. Zhao, Q. Lu, S. Liu, C. Zhu, H. Sun, Mater. Lett. 139, 19 (2015)

    Article  CAS  Google Scholar 

  19. S. Sreekantan, R. Hazan, Z. Lockman, Thin Solid Films. 518, 16 (2009)

    Article  CAS  Google Scholar 

  20. Y. Chen, Y. Tang, S. Luo, C. Liu, Y. Li, J. Alloys Compd. 578, 242 (2013)

    Article  CAS  Google Scholar 

  21. C. Wang, L. Zhu, M. Wei, P. Chen, G. Shan, Water Res. 845 , 46, (2012)

    Google Scholar 

  22. H. Wang, Y. Wu, B.-Q. Xu, Appl. Catal. B 59, 139 (2005)

    Article  CAS  Google Scholar 

  23. X. Zhang, S. Lin, J. Liao, N. Pan, D. Li, X. Cao, J. Li, Electrochim. Acta 108, 296 (2013)

    Article  CAS  Google Scholar 

  24. C. Shifu, Z. Sujuan, L. Wei, Z. Wei, J. Hazard. Mater. 6, 320 (2008)

    Article  Google Scholar 

  25. F.J. Zhang, F.Z. Xie, J. Liu, W. Zhao, K. Zhang, Ultrason. Sonochem. 20, 209 (2013)

    Article  Google Scholar 

  26. C. Chen, W. Zhao, P. Lei, J. Zhao, N. Serpone, Chem. Eur. J. 10, 1956 (2004)

    Article  CAS  Google Scholar 

  27. X. Xu, Y. Ge, B. Li, F. Fan, F. Wang, Mater. Res. Bull. 59, 329 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present work was financially supported by National Natural Science Foundation of China (Grant No. 41472214), also funded by Graduate Innovation Fund of Jilin University (No. 2015027) and Jilin Provincial Science & Technology Department (Grant No. 20150204050SF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengyu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, S., Zhong, S., Lv, C. et al. Effect of synthesis highly ordered TiO2 nanotube arrays with enhanced photocatalytic properties by time, electrolytic voltage, heating temperature and Polyvinyl pyrrolidone. J Porous Mater 23, 1239–1247 (2016). https://doi.org/10.1007/s10934-016-0182-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-016-0182-3

Keywords

Navigation