Skip to main content
Log in

A Secure Quantum Communication via Deformed Tripartite Coherent States

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We propose a secure quantum-network protocol using Greenberger–Horne–Zeilinger (GHZ) tripartite deformed states. Alice and Bob share a secure key by exchanging the entangled deformed states without basis reconciliation. We investigate a perfect transmission efficiency in a perfect quantum channel. The security of the protocol is ensured by the deformed and correlated tripartite states, which allows us to detect any eavesdropping easily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ekert and R. Jozsa, Rev. Mod. Phys., 68, 733 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  2. D. P. Divincenzo, Science, 270, 255 (1995).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. C. H. Bennett, G. Brassard, Claude Crépeau, et al., Phys. Rev. Lett., 70, 1895 (1993).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. A. K. Ekert, Phys. Rev. Lett., 67, 661 (1991).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. C. H. Bennett, G. Brassard, and N. D. Mermin, Phys. Rev. Lett., 68, 557 (1992).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. C. H. Bennett, F. Bessette, G. Brassard, et al., J. Cryptogr., 5, 3 (1992).

    MATH  Google Scholar 

  7. J. Perskill, Proc. R. Soc. London, 454, 385 (1998).

    Article  ADS  Google Scholar 

  8. S. D. Huver, C. F. Wildfeuer, and J. P. Dowling, Phys. Rev. A, 78, 063828 (2008).

    Article  ADS  Google Scholar 

  9. G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, Phys. Rev. Lett., 85, 1330 (2000).

    Article  ADS  Google Scholar 

  10. P. W. Shor and J. Preskill, Phys. Rev. Lett., 85, 441 (2000).

    Article  ADS  Google Scholar 

  11. N. Lütkenhaus, Phys. Rev. A, 61, 052304 (2000).

    Article  ADS  Google Scholar 

  12. V. Scarani, A. Acin, G. Ribordy, and N. Gisin, Phys. Rev. Lett., bf 92, 057901 (2004).

  13. D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, J. Quantum Inform. Comput., 4, 325 (2004).

    MATH  Google Scholar 

  14. V. Makarov, A. Anisimov, and J. Skaar, Phys. Rev. A, 74, 022313 (2006); Erratum, ibid., 78, 019905 (2008).

  15. C.-H. F. Fung, K. Tamaki, B. Qi, et al., J. Quantum Inform. Comput., 9, 131 (2009).

    MATH  MathSciNet  Google Scholar 

  16. J. Barrett, R. Colbeck, and A. Kent, Phys. Rev. Lett., 110, 010503 (2013).

    Article  ADS  Google Scholar 

  17. S. Cova, M. Ghioni, A. Lotito, et al., J. Mod. Opt., 51, 1267 (2004).

    Article  ADS  Google Scholar 

  18. V. Makarov and D. R. Hjelme, J. Mod. Opt., 52, 691 (2005).

    Article  ADS  Google Scholar 

  19. A. Lamas-Linares and C. Kurtsiefer, Opt. Express, 15, 9388 (2007).

    Article  ADS  Google Scholar 

  20. B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, J. Quantum Inform. Comput., 7, 73 (2007).

    MATH  MathSciNet  Google Scholar 

  21. Y. Zhao, C.-H. F. Fung, B. Qi, et al., Phys. Rev. A, 78, 042333 (2008).

    Article  ADS  Google Scholar 

  22. S. Nauerth, M. Fürst, T. Schmitt-Manderbach, et al., New J. Phys., 11, 065001 (2009).

    Article  ADS  Google Scholar 

  23. L. Lydersen, C. Wiechers, C. Wittmann, et al., Nature Photonics, 4, 686 (2010).

    Article  ADS  Google Scholar 

  24. A. El Allati, M. El Baz, and Y. Hassouni, J. Quantum Inform. Comput., 10, 589 (2011).

    MATH  MathSciNet  Google Scholar 

  25. H. Eleuch and R. Bennaceur, J. Opt. B: Quantum Semiclass. Opt., 6, 189 (2004).

    Article  ADS  Google Scholar 

  26. K. Berrada, M. El Baz, and Y. Hassouni, Phys. Lett. A, 375, 298 (2011).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. K. Berrada, M. El Baz, and Y. Hassouni, J. Stat. Phys., 142, 510 (2011).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. K. Berrada, M. El Baz, and Y. Hassouni, Rep. Math. Phys., 68, 23 (2011).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. E. M. F. Curado, M. A. Rego-Monteiro, L. M. C. S. Rodrigues, and Y. Hassouni, Physica A, 371, 16 (2006).

    Article  ADS  Google Scholar 

  30. R. J. Glauber, Phys. Rev., 131, 2766 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  31. A. M. Perelomov, Commun. Math. Phys., 26, 222 (1972).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. A. M. Perelomov, Generalized Coherent States and Their Applications, Springer, New York (1986).

    Book  MATH  Google Scholar 

  33. V. V. Dodonov, I. A. Malkin, and V. I. Man’ko, Physica, 72, 597 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  34. B. C. Sanders, Phys. Rev. A, 45, 6811 (1992).

    Article  ADS  Google Scholar 

  35. X. Wang, B. C. Sanders, and S. H. Pan, J. Phys. A: Math. Gen., 33, 7451 (2000).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  36. P. Domokos and M. G. Benedict, Phys. Lett. A, 372, 3792 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  37. X. Wang, B. C. Sanders, and S. Pan, J. Phys. A. Math. Gen., 33, 7451 (2000).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  38. J. R. Klauder and B. Skagertam, Physics and Mathematical Physics, World Scientific, Singapore (1985).

    MATH  Google Scholar 

  39. A. Inomata, H. Kuratsuji, and C. Gerry, Path integrals and coherent states of SU(2) and SU(1,1), World Scientific, Singapore (1992).

    Book  Google Scholar 

  40. V. I. Man’ko, G. Marmo, E. C. G. Sudarshan, and F. Zaccaria, Phys. Scr., 55, 528 (1997).

    Article  ADS  Google Scholar 

  41. T. Oikonomou and G. B. Bagci, J. Math. Phys., 50, 103301 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  42. S. Hill and W. K. Wootters, Phys. Rev. Lett., 78, 5022 (1997).

    Article  ADS  Google Scholar 

  43. W. K. Wootters, Phys. Rev. Lett., 80, 2245 (1998).

    Article  ADS  Google Scholar 

  44. C. H. Bennett and G. Brassard, in: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing (Bangalore, India, December 1984), IEEE Publishers, New York (1984), p. 175.

  45. C. H. Bennett, F. Bessette, G. Brassard, et al., J. Cryptogr., 5, 3 (1992).

    MATH  Google Scholar 

  46. C. H. Bennett, Phys. Rev. Lett., 68, 3121 (1992).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  47. K. Boström and T. Felbinger, Phys. Rev. Lett., 89, 187902 (2002).

    Article  ADS  Google Scholar 

  48. W. K. Wootters and W. H. Zurek, Nature, 299, 802 (1982).

    Article  ADS  Google Scholar 

  49. F. Grosshans, G. Van Assche, J. Wenger, et al., Nature, 421, 238 (2003).

    Article  ADS  Google Scholar 

  50. S. Iblisdir, G. Van Assche, and N. J. Cerf, Phys. Rev. Lett., 93, 170502 (2004).

    Article  ADS  Google Scholar 

  51. R. Garca-Patrn and N. J. Cerf, Phys. Rev. Lett., 97, 190503 (2006).

    Article  ADS  Google Scholar 

  52. R. Renner and J. I. Cirac, Phys. Rev. Lett., 102, 110504 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Meslouhi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meslouhi, A., Amellal, H., Hassouni, Y. et al. A Secure Quantum Communication via Deformed Tripartite Coherent States. J Russ Laser Res 35, 369–382 (2014). https://doi.org/10.1007/s10946-014-9438-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-014-9438-z

Keywords

Navigation