Skip to main content
Log in

Inorganic Magnetite Precipitation at 25 °C: A Low-Cost Inorganic Coprecipitation Method

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

An easy, low-cost coprecipitation method to inorganically produce magnetite nanoparticles from solutions, in free-drift experiments, under anoxic conditions, at 25 °C and 1 atm pressure is here presented. By using this method, pure magnetite is obtained as the final solid, which shows the typical magnetic properties and thermal stability behavior of magnetite produced by other methods. The size of the magnetite crystals produced by the present method varies from relatively big sizes (200–300 nm), to sizes within the single magnetic domain range, just depending on the incubation time. The solution from which magnetite precipitates may be representative of certain natural environments where bacteria that produce magnetite may live and, thus, our magnetite may be used as an inorganic reference to compare to biologically produced magnetites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thomas-Keprta, K.L., Bazylinski, D.A., Kirschvink, J.L., Clemett, S.J., McKay, D.S., Wentworth, S.J., Vali, H., Gibson, E.K. Jr., Romanek, C.S.: Elongated prismatic magnetite crystals in ALH84001 carbonate globules: potential Martian magnetofossils. Geochim. Cosmochim. Acta 64, 4049–4081 (2000). doi: 10.1016/S0016-7037(00)00481-6

    Article  ADS  Google Scholar 

  2. Mozley, P.S., Carothers, W.W.: Elemental and isotopic composition of siderite in the Kupanuk Formation, Alaska: Effect of microbial activity and water/sediment interaction on early pore-water chemistry. J. Sediment. Petrol. 64, 681–692 (1992)

    Google Scholar 

  3. Ptacek, C.J.: Experimental determination of siderite solubility in high ionic-strength aqueous solutions. Ph.D. Thesis, Univ. Waterloo, Waterloo, Ontario, Canada (1992)

  4. Rajan, S., Mackenzie, F.T., Glenn, C.R.: A thermodynamic model for water column precipitation of siderite in the Plio-Pleistocene Black Sea. Am. J. Sci. 296, 506–548 (1996)

    Article  Google Scholar 

  5. Kelts, K.: Environments of deposition of lacustrine petroleum source rocks: an introduction. In Fleet, A.J., Kelts, K., Talbot, M.R. (eds.) Lacustrine Petroleum Source Rocks, vol. 40, pp. 3–26. Geol. Soc. Spec. Publ., London (1988)

    Google Scholar 

  6. Michard, A., Beucaire, C., Michard, G.: Uranium and rare earth elements in CO2-rich waters from Vals-les Bains (France). Geochim. Cosmochim. Acta 51, 901–909 (1988)

    Article  ADS  Google Scholar 

  7. Frankel, R.B., Bazylinski, D.A.: Biologically induced mineralization by bacteria. Rev. Mineral. Geochem. 54, 217–247 (2003). doi:10.2113/0540095

    Article  Google Scholar 

  8. Bazylinski, D.A., Frankel, R.B.: Biologically controlled mineralization in prokaryotes. Rev. Mineral. Geochem. 54, 95–114 (2003). doi:10.2113/0540217

    Article  Google Scholar 

  9. Chakraborty, A.J.: Kinetics of the reduction of hematite to magnetite near its Curie transition. Magn. Magn. Mater. 204, 57–60 (1999)

    Article  ADS  Google Scholar 

  10. Peikov, V.T., Jeon, K.S., Lane, A.M.: Characterization of magnetic inks by measurements of frequency dependence of AC susceptibility. J. Magn. Magn. Mater. 193, 307–310 (1999)

    Article  ADS  Google Scholar 

  11. McMichael, R.D., Shull, L.J., Swartzendruber, L.H., Bennett, R.E., Walson, J.: Magnetocaloric effect in superparamagnets. Magn. Magn. Mater. 111, 29–33 (1992)

    Article  ADS  Google Scholar 

  12. Sen, T., Sebastianelli, A., Bruce, I.J.: Mesoporous silica-magnetite nanocomposite: Fabrication and applications in magnetic bioseparations. J. Am. Chem. Soc. 128, 7130–7131 (2006)

    Article  Google Scholar 

  13. Pinho, M.S., Gregori, M.L., Nunes, R.C.R., Soares, B.G.: Aging effect on the reflectivity measurements of polychloroprene matrices containing carbon black and carbonyl-iron powder. Polym. Degrad. Stab. 73(1), 1–5 (2001)

    Article  Google Scholar 

  14. Kim, D.K., Zhang, Y., Kehr, J., Klason, T., Bjelke, B., Muhammed, M.: Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J. Magn. Magn. Mater. 225(1–2), 256–261 (2001)

    Article  ADS  Google Scholar 

  15. Kumagai, M., Kano, M.R., Morishita, Y., Ota, M., Imai, Y., Nishiyama, N., Sekino, M., Ueno, S., Miyazono, K., Kataoka, K.: Enhanced magnetic resonance imaging of experimental pancreatic tumor in vivo by block copolymer-coated magnetite nanoparticles with TGF-β inhibitor. J. Control. Release 140(3), 306–311 (2009)

    Article  Google Scholar 

  16. Wunderbaldinger, P., Josephson, L., Weissleder, R.: Tat peptide directs enhanced clearance and hepatic permeability of magnetic nanoparticles. Bioconjug. Chem. 13, 264–268 (2002)

    Article  Google Scholar 

  17. Begg, A.C., Sprong, D., Balm, A., Martin, J.M.C.: Premature chromosome condensation and cell separation studies in biopsies from head and neck tumors for radiosensitivity prediction. Radiother. Oncol. 62, 335–343 (2002)

    Article  Google Scholar 

  18. Roulin, V.G., Deverre, J.R., Lemaire, L., Hindré, F., Julienne, M.C.V., Vienet, R., Benoit, J.P.: Anti-cancer drug diffusion within living rat brain tissue: An experimental study using [3H](6)-5-fluorouracil-loaded PLGA microspheres. Eur. J. Pharm. Biopharm. 53, 293–299 (2002)

    Article  Google Scholar 

  19. Mura, C.V., Becker, M.I., Orellana, A., Wolff, D.J.: Immunopurification of Golgi vesicles by magnetic sorting. Immunol. Methods 260, 263–271 (2002)

    Article  Google Scholar 

  20. Call, D.R., Brockman, F.J., Chandler, D.P.: Detecting and genotyping Escherichia coli O157:H7 Using multiplexed PCR and nucleic acid microarrays. Int. J. Food Microbiol. 67, 71–80 (2001)

    Article  Google Scholar 

  21. Kanno, S., Oshima, K., Shimomura, M., Miyauchi, S.: Immobilization of enzyme to magnetic particles modified with polyacrylic acid. Polym. Prepr. 54(1), 2385 (2005)

    Google Scholar 

  22. Perez, J.M., Simeone, F.J., Saeki, Y., Josephson, L., Weissleder, R.: Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. J. Am. Chem. Soc. 125, 10192–10193 (2003)

    Article  Google Scholar 

  23. Nixon, L., Koval, C.A., Noble, R.D., Slaff, G.S.: Preparation and characterization of novel magnetite-coated ion-exchange particles. Chem. Mater. 4, 117–121 (1992)

    Article  Google Scholar 

  24. Vayssières, L., Chanèac, C., Tronc, E., Jolivet, J.P.: Size tailoring of magnetite particles formed by aqueous precipitation: an example of thermodynamic stability of nanometric oxide particles. J. Colloid Interface Sci. 205, 205–212 (1998). doi:10.1006/jcis.1998.5614

    Article  Google Scholar 

  25. Tseng, J.Y., Chang, C.Y., Chen, Y.H., Chang, C.F., Chiang, P.C.: Synthesis of micro-size magnetic polymer adsorbent and its application for the removal of Cu(II) ion. Colloid Surf. A 295, 209–216 (2007)

    Article  Google Scholar 

  26. Prozorov, T., Mallapragada, S.K., Narasimhan, B., Wang, L., Palo, P., Nilsen-Hamilton, M., Williams, T.J., Bazylinski, D.A., Prozorov, R., Canfield, P.C.: Protein-mediated synthesis of uniform superparamagnetic magnetite nanocrystals. Adv. Funct. Mater. 17, 951–957 (2007)

    Article  Google Scholar 

  27. Nyirö-Kósa, I., Csákberényinagy, D., Pósfai, M.: Size and shape control of precipitated magnetite nanoparticles. Eur. J. Mineral. 21, 293–302 (2009)

    Article  Google Scholar 

  28. Arató, B., Szányi, Z., Flies, C., Schüler, D., Frankel, R.B., Buseck, P.R., Pósfai, M.: Crystal-size and shape distributions of magnetite from uncultured magnetotactic bacteria as a potential biomarker. Am. Mineral. 90, 1233–1241 (2005). doi:10.2138/am.2005.1778

    Article  Google Scholar 

  29. Mann, S., Hannington, J.P.: Formation of iron oxides in unilamellar vesicles. J. Colloid Interface Sci. 122, 326–335 (1988). doi:10.1016/0021-9797(88)90368-2

    Article  Google Scholar 

  30. Ward, A.J.I., Friberg, S.: Preparing narrow size distribution particles from amphiphilic association structure. MRS Bull. 14, 41 (1989)

    Google Scholar 

  31. Liu, Z.L., Wang, X., Yao, K.L., Du, G.H., Lu, Q.H., Ding, Z.H., Tao, J., Ning, Q., Luo, X.P., Tian, D.Y., Xi, D.: Synthesis of magnetite nanoparticles in W/O microemulsion. J. Mater. Sci. 39, 2633–2636 (2004). doi:10.1023/B:JMSC.0000020046.68106.22

    Article  ADS  Google Scholar 

  32. Schwertmann, U., Cornell, R.M.: Iron Oxides in the Laboratory: Preparation and Characterization, 2nd edn. Wiley-VCH, Weinheim (2000)

    Google Scholar 

  33. Zhu, H., Yang, D., Zhu, L.: Hydrothermal growth and characterization of magnetite (Fe3O4) thin films. Surf. Coat. Technol. 201, 5870–5874 (2007)

    Article  Google Scholar 

  34. Rodriguez-Navarro, A.: XRD2DScan: new software for polycrystalline materials characterization using two-dimensional X-ray diffraction. J. Appl. Crystallogr. 39, 905–909 (2006)

    Article  Google Scholar 

  35. Schwertmann, U.: Solubility and dissolution of iron oxides. Plant Soil 130(1–2), 1–25 (1991)

    Article  Google Scholar 

  36. Garrels, R.M., Christ, C.L.: Solutions, Minerals and Equilibria, p. 450. Jones and Bartlett, Boston (1990)

    Google Scholar 

  37. Morse, J.W., Casey, W.H.: Ostwald processes and mineral paragenesis in sediments. Am. J. Sci. 288, 537–560 (1988)

    Article  Google Scholar 

  38. Ogino, T., Suzuki, T., Sawada, K.: The formation and transformation mechanism of calcium carbonate in water. Geochim. Cosmochim. Acta 51, 2757–2767 (1987)

    Article  ADS  Google Scholar 

  39. Jimenez-Lopez, C., Caballero, E., Huertas, F.J., Romanek, C.S.: Chemical, mineralogical and isotope behaviour, and phase transformation. Geochim. Cosmochim. Acta 65(19), 3219–3231 (2001)

    Article  ADS  Google Scholar 

  40. Jimenez-Lopez, C., Romanek, C.S., Huertas, F.J., Ohmoto, H., Caballero, E.: Oxygen isotope fractionation in synthetic magnesian calcite. Geochim. Cosmochim. Acta 68(16), 3367–3377 (2004)

    Article  ADS  Google Scholar 

  41. Butler, R.F., Banerjee, S.K.: Theoretical single-domain grain size range in magnetite and titanomagnetite. J. Geophys. Res. 80, 4049–4058 (1975)

    Article  ADS  Google Scholar 

  42. Schwertmann, U., Murad, E.: The influence of aluminum on iron oxides: XIV. Aluminum substituted magnetite synthesized at ambient temperatures. Clay Miner. 38, 196–202 (1990). doi: 10.1346/CCMN.1990.0380211

    Article  Google Scholar 

  43. Qu, S., Yang, H., Ren, D., Kan, S., Zou, G., Li, D., Li, M.: Magnetite nanoparticles prepared by precipitation from partially reduced ferric chloride aqueous solutions. J. Colloid Interf. Sci. 215, 190–192 (1999). doi:10.1006/jcis.1999.6185

    Article  Google Scholar 

  44. Franger, S., Berthet, P., Berthon, J.: Electrochemical synthesis of Fe3O4 nanoparticles in alkaline aqueous solutions containing complexing agents. J. Solid State Eletrochem. 8, 218–223 (2004)

    Article  Google Scholar 

  45. Zachara, J.M., Kukkadapu, R.K., Fredrickson, J.K., Gorby, Y.A., Smith, S.C.: Biomineralization of poorly crystalline Fe(III) oxides by dissimilatory metal reducing bacteria (DMRB). Geomicrobiol. J. 19, 179–207 (2002). doi:10.1080/01490450252864271

    Article  Google Scholar 

  46. Perez-Gonzalez, T., Jimenez-Lopez, C., Neal, A.L., Rull-Perez, F., Rodriguez-Navarro, A., Fernandez-Vivas, A., Iañez-Pareja, E.: Magnetite biomineralization induced by Shewanella oneidensis. Geochim. Cosmochim. Acta 74(3), 967–979 (2010)

    Article  ADS  Google Scholar 

  47. Bernal, J.D., Dasgupta, D.R., Mackay, A.L.: Oriented transformations in iron oxides and hydroxides. Nature 28, 654–647 (1957)

    Google Scholar 

  48. Hanesch, M.: Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies. Geophys. J. Int. 177, 941–948 (2009)

    Article  ADS  Google Scholar 

  49. Lima, E., Brand, A.L., Arelaro, A.D., Goya, G.F.: Spin disorder and magnetic anisotropy in Fe3O4 nanoparticles. J. Appl. Phys. 99(8), 083908 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Jimenez-Lopez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perez-Gonzalez, T., Rodriguez-Navarro, A. & Jimenez-Lopez, C. Inorganic Magnetite Precipitation at 25 °C: A Low-Cost Inorganic Coprecipitation Method. J Supercond Nov Magn 24, 549–557 (2011). https://doi.org/10.1007/s10948-010-0999-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-010-0999-y

Keywords

Navigation