Skip to main content
Log in

Nanoclusters as a New Family of Superconductors: Potential for Room Temperature Superconductivity

  • Nanostructures; Low Dimensional Systems
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Under special but perfectly realistic conditions, superconducting pairing in metallic nanoclusters can become very strong, and they form a new family of high temperature superconductors. The presence of electronic energy shells, similar to those in atoms and nuclei, is the key ingredient of this scenario. In principle, T c can be raised up to room temperature. Charge transfer between clusters via Josephson coupling can give rise to strong macroscopic high temperature superconducting currents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bohr, Mottelson, B., Pines, D.: Phys. Rev. 110, 936 (1958)

    Article  ADS  Google Scholar 

  2. Belyaev, S.: Mat. Phys. Medd. Dan. Selsk. 31, 131 (1959)

    MathSciNet  Google Scholar 

  3. Migdal, A.: Nucl. Phys. 13, 655 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ring, P., Schuck, P.: The Nuclear Many-Body Problem. Springer, New York (1980)

    Google Scholar 

  5. Shukhareva, I.: J. Exp. Theor. Phys. 16, 828 (1963)

    ADS  Google Scholar 

  6. Strongin, M., Kammerer, O., Paskin, A.: Phys. Rev. Lett. 14, 949 (1965)

    Article  ADS  Google Scholar 

  7. Kresin, V., Tavger, B.: Sov. Phys. JETP 23, 1124 (1966)

    ADS  Google Scholar 

  8. Alekseevskii, N., Vedeneev, S.: JETP Lett. 6, 302 (1967)

    ADS  Google Scholar 

  9. Deutcher, G., Fenichel, H., Gershenson, M., Grunbaum, E., Ovadyahu, Z.: J. Low Temp. Phys. 10, 231 (1973)

    Article  ADS  Google Scholar 

  10. Neeleshwar, S., Chen, Y., Wang, C., Ou, M., Huang, P.: Physica C 408, 209 (2004)

    Article  ADS  Google Scholar 

  11. Parmenter, H.: Phys. Rev. 166, 392 (1968)

    Article  ADS  Google Scholar 

  12. Deutcher, G.: New Superconductors: From Granular to High T c . World Scientific, Singapore (2005)

    Google Scholar 

  13. Deutcher, G., Super, J.: Nov. Magn. (this issue)

  14. Ralph, D., Black, C., Tinkham, M.: Phys. Rev. Lett. 74, 3241 (1995)

    Article  ADS  Google Scholar 

  15. Ralph, D., Black, C., Tinkham, M.: Phys. Rev. Lett. 76, 688 (1996)

    Article  ADS  Google Scholar 

  16. Ralph, D., Black, C., Tinkham, M.: Phys. Rev. Lett. 78, 408 (1997)

    Article  ADS  Google Scholar 

  17. Tinkham, M., Hergenrother, J., Lu, J.: Phys. Rev. B 51, 12649 (1995)

    Article  ADS  Google Scholar 

  18. Knight, W., Clemenger, K., de Heer, W., Saunders, W., Chou, M., Cohen, M.: Phys. Rev. Lett. 52, 2141 (1984)

    Article  ADS  Google Scholar 

  19. Friedel, J.: Philos. Mag. 79, 1251 (1999)

    ADS  Google Scholar 

  20. de Heer, W.: Rev. Mod. Phys. 65, 611 (1993)

    Article  ADS  Google Scholar 

  21. Bednorz, G., Mueller, K.: Z. Phys. D 22, 659 (1992)

    Article  ADS  Google Scholar 

  22. Knight, W.: In: Wolf, S., Kresin, V.Z. (eds.) Novel Superconductivity, p. 47. Plenum, New York (1987)

    Chapter  Google Scholar 

  23. Friedel, J.: J. Phys. (Paris) 2, 959 (1992)

    Google Scholar 

  24. Brack, M.: Rev. Mod. Phys. 65, 677 (1993)

    Article  ADS  Google Scholar 

  25. Kresin, V.V., Knight, W.: In: Kresin, V.Z. (ed.) Pair Correlations in Many-Fermion Systems, p. 245. Plenum, New York (1998)

    Google Scholar 

  26. Frauendorf, S., Guet, C.: Annu. Rev. Nucl. Part. Sci. 51, 219 (2001)

    Article  ADS  Google Scholar 

  27. Martin, J., Car, R., Buttet, J.: Surf. Sci. 106, 265 (1981)

    Article  ADS  Google Scholar 

  28. Pellarin, M., Baguenard, B., Bordas, C., Broyer, M., Lerme, J., Vialle, J.: Phys. Rev. B 48, 17645 (1993)

    Article  ADS  Google Scholar 

  29. Baguenard, B., Pellarin, M., Bordas, C., Lerme, J., Vialle, J., Broyer, M.: Chem. Phys. Lett. 205, 13 (1993)

    Article  ADS  Google Scholar 

  30. Katakuse, I., Ichihara, T., Fujita, Y., Matsuo, T., Sakurai, T., Matsuda, H.: Int. J. Mass Spectrom. Ion Process. 69, 109 (1986)

    Article  Google Scholar 

  31. Ruppel, M., Rademann, K.: Chem. Phys. Lett. 197, 280 (1992)

    Article  ADS  Google Scholar 

  32. Kresin, V., Ovchinnikov, Y.: Phys. Rev. B 74, 024514 (2006)

    Article  ADS  Google Scholar 

  33. Groitory, M., Shanenko, A., Kaun, C., Peeters, F.: Phys. Rev. B 83, 214509 (2011)

    Article  ADS  Google Scholar 

  34. Garcia-Garcia, A., Urbina, Y., Yuzbahyan, E., Richter, K., Altshuler, B.: Phys. Rev. B 83, 014510 (2011)

    Article  ADS  Google Scholar 

  35. Lindenfeld, Z., Eisenberg, E., Lifshitz, R.: Phys. Rev. B 84, 064532 (2011)

    Article  ADS  Google Scholar 

  36. Labbe, J., Barisic, S., Friedel, J.: Phys. Rev. Lett. 19, 1039 (1967)

    Article  ADS  Google Scholar 

  37. Anderson, P.: J. Phys. Chem. Solids 11, 59 (1959)

    Article  Google Scholar 

  38. Abrikosov, A., Gor’kov, L., Dzyaloshinskii, I.: Methods of Quantum Field Theory in Statistical Physics. Dover, New York (1975)

    Google Scholar 

  39. Gor’kov, L.: J. Exp. Theor. Phys. 7, 505 (1958)

    MATH  Google Scholar 

  40. Grimvall, G.: The Electron–Phonon Interaction in Metals. North-Holland, Amsterdam (1981)

    Google Scholar 

  41. Eliashberg, G.: J. Exp. Theor. Phys. 12, 1000 (1961)

    Google Scholar 

  42. McMillan, W.: Phys. Rev. 167, 331 (1968)

    Article  ADS  Google Scholar 

  43. Ekardt, W.: Phys. Rev. B 29, 1558 (1984)

    Article  ADS  Google Scholar 

  44. Hock, C., Schmidt, M., Issendorff, B.V.: Phys. Rev. 1384, 113401 (2011)

    Google Scholar 

  45. Owen, C., Scalapino, D.: Physica 55, 691 (1971)

    Article  ADS  Google Scholar 

  46. Kresin, V.Z., Gutfreund, H., Little, W.: Solid State Commun. 51, 339 (1984)

    Article  ADS  Google Scholar 

  47. Kresin, V.Z.: Phys. Lett. A 122, 434 (1987)

    Article  ADS  Google Scholar 

  48. Issendorff, B.V., Cheshnovsky, O.: Annu. Rev. Phys. Chem. 56, 549 (2005)

    Article  ADS  Google Scholar 

  49. Cao, B., Neal, C., Starace, A., Ovchinnikov, Y., Kresin, V., Jarrell, M.: J. Supercond. Nov. Magn. 21, 163 (2008)

    Article  Google Scholar 

  50. Ovchinnikov, Y., Kresin, V.: Phys. Rev. B 81, 214505 (2010)

    Article  ADS  Google Scholar 

  51. Cobert, D., Schoolwock, U., von Delft, J.: Eur. Phys. J. B 38, 501 (2004)

    Article  ADS  Google Scholar 

  52. Ovchinnikov, Y., Kresin, V.: Phys. Rev. B (in press)

  53. Eckern, U., Schol, G., Ambegaokar, V.: Phys. Rev. B 30, 6419 (1984)

    Article  ADS  Google Scholar 

  54. Larkin, A., Ovchinnikov, Y.: Phys. Rev. B 28, 6281 (1983)

    Article  ADS  Google Scholar 

  55. Duffee, S., Irawan, T., Bieletzki, M., Richter, T., Sieben, B., Yin, C., von Issendorff, B., Moseler, M., Hovel, H.: Eur. Phys. J. D 45, 401 (2007)

    Article  ADS  Google Scholar 

  56. Meirwes-Broer, K. (ed.) Metal Clusters at Surfaces. Springer, Berlin (2000)

    Google Scholar 

  57. Hagel, J., Kelemen, M., Fisher, G., Pilawa, B., Woskitza, J., Dormann, E., Lohneysen, H., Schnepf, A., Schockel, H., Neisel, U., Beck, J.: J. Low Temp. Phys. 129, 133 (2002)

    Article  Google Scholar 

  58. Bono, D., Bakharev, O., Schepf, A., Hartig, J., Schockel, H., de Jongh, L.: Z. Anorg. Allg. Chem. 633, 2173 (2007)

    Article  Google Scholar 

  59. Ekardt, W., Penzar, Z.: Phys. Rev. B 38, 4273 (1988)

    Article  ADS  Google Scholar 

  60. Kresin, V., Friedel, J.: Europhys. Lett. 93, 13002 (2011)

    Article  ADS  Google Scholar 

  61. Berggreen, J., Crowdhury, P., Kebaili, N., Lundsberg-Nielsen, L., Lutzenkirchen, K., Nielsen, M., Pedersen, J., Rasmussen, H.: Phys. Rev. B 48, 17507 (1993)

    Article  ADS  Google Scholar 

  62. Fortunato, L.: Europhys. News 40, 25 (2009)

    Article  ADS  Google Scholar 

  63. Gaudefroy, L., Daugas, J., Hass, M., Grevy, S., Stodel, C., Thomas, J., Perrot, L., Girod, M., Rosse, B., Angelique, J., Blabanski, D., Fiori, E., Force, C., Georgiev, G., Kameda, D., Kumar, V., Lozeva, R., Matea, I., Meot, V., Morel, P., Nara Singh, B., Nowacki, F., Simpson, G.: Phys. Rev. Lett. 102, 092501 (2009)

    Article  ADS  Google Scholar 

  64. Kresin, V., Friedel, J.: unpublished

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Kresin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kresin, V. Nanoclusters as a New Family of Superconductors: Potential for Room Temperature Superconductivity. J Supercond Nov Magn 25, 711–717 (2012). https://doi.org/10.1007/s10948-012-1439-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-012-1439-y

Keywords

Navigation