Skip to main content
Log in

Effect of Magnetic Field Direction on Magnetoresistivity, Activation Energy, Irreversibility and Upper Critical Field of Bi-2212 Thin Film Fabricated by DC Sputtering Method

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

This study aims to investigate the effect of magnetic field direction on superconducting properties of Bi-2212 thin film fabricated on MgO (100) substrate using the direct current (DC) magnetron reactive sputtering technique at 100 watt with the aid of magnetoresistivity measurements. The zero resistivity transition temperatures (T c ), irreversibility fields (μ 0 H irr) and upper critical fields (μ 0 H c2) are deduced from the magnetoresistivity versus temperature curves under DC magnetic fields (parallel and perpendicular to c-axis) up to 5 T. Moreover, thermally activated flux flow (TAFF) model is studied for activation energy (U 0) values of the sample. It is found that the T c value decreases from 76.4 K to 39.1 K for the applied magnetic field perpendicular to c-axis (μ 0 Hc-axis); likewise, the T c reduces towards 28.8 K with the increase in the applied field parallel to c-axis (μ 0 Hc-axis). Furthermore, the U 0 values are found to decrease considerably with increasing applied magnetic field. In fact, the U 0 of 134.5 K is obtained to be smallest at 5 T field parallel to the c-axis. Additionally, both the μ 0 H irr and μ 0 H c2 values determined are also observed to reduce with the increase of the applied magnetic field. At absolute zero temperature (T=0 K), the extrapolation of the μ 0 H irr(T) and μ 0 H c2(T) curves is used to obtain the μ 0 H irr(0) and μ 0 H c2(0) values of the film, respectively. The inner is found to be about 22.216 T (19.046 T) for the applied field perpendicular (parallel) to c-axis whereas the latter is determined to be about 54.095 T (126.522 T) for the applied field parallel (perpendicular) to c-axis, respectively, as a result of anisotropic behavior of the film prepared. On the other hand, penetration depths (λ) and coherence lengths (ξ) inferred from μ 0 H irr(0) and μ 0 H c2(0) values are obtained to be about 38.519 Å (41.601 Å) and 16.147 Å (24.685 Å) in the case of applied field perpendicular (parallel) to c-axis, respectively. Based on all the results, the change of the superconducting properties as a function of the magnetic field direction presents the anisotropy of the sample produced. X-ray diffraction (XRD) and scanning electron microscopy (SEM) examinations are also conducted for microstructural and phase analyses of the film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sarun, P.M., Vinu, S., Shabna, R., Biju, A., Syamaprasad, U.: Mater. Res. Bull. 44, 1017 (2009)

    Article  Google Scholar 

  2. Terzioglu, C., Yilmazlar, M., Ozturk, O., Yanmaz, E.: Physica C 423, 119 (2005)

    Article  ADS  Google Scholar 

  3. Ozturk, O., Akdogan, M., Aydın, H., Yilmazlar, M., Terzioglu, C., Belenli, I.: Physica B 399, 94 (2007)

    Article  ADS  Google Scholar 

  4. Terzioglu, C., Ozturk, O., Kilic, A., Gencer, A., Belenli, I.: Physica C 434, 153 (2006)

    Article  ADS  Google Scholar 

  5. Yegen, D., Varilci, A., Yılmazlar, M., Terzioglu, C., Belenli, I.: Physica C 466, 5 (2007)

    Article  ADS  Google Scholar 

  6. Karaca, I., Celebi, S., Varilci, A., Malik, A.I.: Supercond. Sci. Technol. 16, 100 (2003)

    Article  ADS  Google Scholar 

  7. Varilci, A., Altunbas, M., Gorur, O., Karaca, I., Celebi, S.: Phys. Status Solidi A 194, 206 (2002)

    Article  ADS  Google Scholar 

  8. Mihalache, V., Aldica, G.: J. Optoelectron. Adv. Mater. 9, 919 (2007)

    Google Scholar 

  9. Runde, M.: IEEE Trans. Appl. Supercond. 5, 813 (1995)

    Article  Google Scholar 

  10. Sedky, A.: Physica C 468, 1041 (2008)

    Article  ADS  Google Scholar 

  11. Okada, M.: Sci. Technol. 13, 29 (2000)

    ADS  Google Scholar 

  12. Chanda, B., Dey, T.K.: Magn. Supercond. Mater. A–B, 295 (2000)

  13. Asikuzun, E., Ozturk, O., Cetinkara, H.A., Yildirim, G., Varilci, A., Yılmazlar, M., Terzioglu, C.: J. Mater. Sci. Mater. Electron (2011). doi:10.1007/s10854-011-0537-0

    Google Scholar 

  14. Phillips, J.M.: J. Appl. Phys. 79, 1829 (1996)

    Article  ADS  Google Scholar 

  15. Li, A.H., Ionescu, M., Wang, X.L., Dou, S.X., Wang, H.: J. Alloys Compd. 333, 179 (2002)

    Article  Google Scholar 

  16. Singh, R.K., Kumar, D.: Mater. Sci. Eng. R22, 113 (1998)

    Google Scholar 

  17. Alford, N.McN., Penn, S.J., Button, T.W.: Supercond. Sci. Technol. 10, 169 (1997)

    Article  ADS  Google Scholar 

  18. Ghahfarokhi, S.E.M., Shoushtari, M.Z.: Physica B 405, 4643 (2010)

    Article  ADS  Google Scholar 

  19. Miao, H., Meinesz, M., Czabai, B., Parrell, J., Hong, S.: AIP Conf. Proc. 986, 423 (2008)

    Article  ADS  Google Scholar 

  20. Biju, A., Aloysius, R.P., Syamaprasad, U.: Supercond. Sci. Technol. 18, 1454 (2005)

    Article  ADS  Google Scholar 

  21. Koyama, K., Kanno, S., Noguchi, S.: Jpn. J. Appl. Phys. 29, L53 (1990)

    Article  ADS  Google Scholar 

  22. Rentschler, T., Kemmlersack, S., Hartmann, M., Hubener, R.P., Kessler, P., Lichte, H.: Physica C 200, 287 (1992)

    Article  ADS  Google Scholar 

  23. Vinu, S., Sarun, P.M., Shabna, R., Biju, A., Syamaprasad, U.: J. Appl. Phys. 104, 043905 (2008)

    Article  ADS  Google Scholar 

  24. Wakata, M., Takano, S., Munakata, F., Yamauchi, H.: Cryogenics 32, 1046 (1992)

    Article  Google Scholar 

  25. Wan, X., Sun, Y., Song, W., Jiang, L., Wang, K., Du, J.: Supercond. Sci. Technol. 11, 1079 (1998)

    Article  ADS  Google Scholar 

  26. Vinu, S., Sarun, P.M., Shabna, R., Syamaprasad, U.: J. Alloys Compd. 487, 1 (2009)

    Article  Google Scholar 

  27. Tinkham, M.: Introduction to Superconductivity, 2nd edn. McGraw-Hill, New York (1996)

    Google Scholar 

  28. Sheahen, T.P.: Introduction to High-Temperature Superconductivity, 1st edn. Springer, New York (1994)

    Google Scholar 

  29. Yazici, D., Erdem, M., Ozcelik, B.: J. Supercond. Nov. Magn. (2011). doi:10.1007/s10948-011-1331-1

    Google Scholar 

  30. Poole, C.P. Jr., Farach, R.J., Creswick, R.J., Prozorov, R.: Superconductivity, 2nd edn. Academic Press, London (2007)

    Google Scholar 

  31. Palstra, T.T., Batlogg, B., Schneemeyer, L.F., Waszczak, J.V.: Phys. Rev. Lett. 61, 662 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  32. Griessen, R.: Phys. Rev. Lett. 64, 1674 (1990)

    Article  ADS  Google Scholar 

  33. Malozemoff, A.P., Worthington, T.K., Zeldov, E., Yeh, N.C., McElfresh, M.W.: In: Fukuyama, H., Maekawa, S., Malozemoff, A.P. (eds.) Strong Correlation and Superconductivity. Springer Series in Sol. State Sci., vol. 89. Springer, Berlin (1989)

    Chapter  Google Scholar 

  34. Ma, R.C., Song, W.H., Zhu, X.B., Zhang, L., Liu, S.M., Fang, J., Du, J.J., Sun, Y.P., Li, C.S., Yu, Z.M., Feng, Y., Zhang, P.X.: Physica C 405, 34 (2004)

    Article  ADS  Google Scholar 

  35. Charalambous, M., Chaussy, J., Lejay, P.: Phys. Rev. B 45, 5091 (1992)

    Article  ADS  Google Scholar 

  36. Dogruer, M., Zalaoglu, Y., Varilci, A., Terzioglu, C., Yildirim, G., Ozturk, O.: J. Supercond. Nov. Magn. (2011). doi:10.1007/s10948-012-1403-x

    Google Scholar 

  37. Salem, A., Jakob, G., Adrian, H.: Physica C 402, 354 (2004)

    Article  ADS  Google Scholar 

  38. Xu, X.J., Fu, L., Wang, L.B., Zhang, Y.H., Fang, J., Cao, X.W., Li, K.B., Hisashi, S.: Phys. Rev. B 59, 608 (1999)

    Article  ADS  Google Scholar 

  39. Yildirim, G., Dogruer, M., Ozturk, O., Varilci, A., Terzioglu, C., Zalaoglu, Y.: J. Supercond. Nov. Magn. (2011). doi:10.1007/s10948-011-1384-1

    Google Scholar 

  40. Pu, M.H., Song, W.H., Zhao, B., Wu, X.C., Sun, Y.P., Du, J.J., Fang, J.: Physica C 361, 181 (2001)

    Article  ADS  Google Scholar 

  41. Yildirim, G., Akdogan, M., Altintas, S.P., Erdem, M., Terzioglu, C., Varilci, A.: Physica B 406, 2011 (1853)

    Google Scholar 

  42. Azzouz, B.F., Mchirgui, A., Yangui, B., Boulesteix, C., Salem, B.M.: Physica C 356, 83 (2001)

    Article  ADS  Google Scholar 

  43. Yildirim, G., Zalaoglu, Y., Akdogan, M., Altintas, S.P., Varilci, A., Terzioglu, C.: J. Supercond. Nov. Magn. 24, 2153 (2011)

    Article  Google Scholar 

  44. Moodera, J.S., Meservey, R., Tkaczyk, J.E., Hao, C.X., Gibson, G.A., Tedrow, P.M.: Phys. Rev. B 37, 619 (1988)

    Article  ADS  Google Scholar 

  45. Ososfky, M.S., Soulen, R.J., Wolf, S.A., Broto, J.M., Rakoto, J.M., Ousset, J.C., Coffe, G., Askenazy, S., Pari, P., Bozovic, I., Eckstein, J.N., Virshup, G.F.: Phys. Rev. Lett. 71, 2315 (1993)

    Article  ADS  Google Scholar 

  46. Erdem, M., Ozturk, O., Yucel, E., Altintas, S.P., Varilci, A., Terzioglu, C., Belenli, I.: Physica B 406, 705 (2011)

    Article  ADS  Google Scholar 

  47. Kitaguchi, H., Matsumoto, A., Hatakeyama, H., Kumakura, H.: Supercond. Sci. Technol. 17, S486 (2004)

    Article  ADS  Google Scholar 

  48. Kim, J.H., Dou, S.X., Shi, D.Q., Rindfleisch, M., Tomsic, M.: Supercond. Sci. Technol. 20, 1026 (2007)

    Article  ADS  Google Scholar 

  49. Yadav, C.S., Paulose, P.L.: New J. Phys. 11, 103046 (2009)

    Article  ADS  Google Scholar 

  50. Smith, G.B., Bell, J.M., Filipczuk, S.W., Andrikidis, C.: Physica C 160, 333 (1989)

    Article  ADS  Google Scholar 

  51. Vo, N.V., Liu, H.K., Dou, S.X.: Supercond. Sci. Technol. 9, 104 (1996)

    Article  ADS  Google Scholar 

  52. Inui, M., Littlewood, P.B., Coppersmith, S.N.: Phys. Rev. Lett. 63, 2421 (1989)

    Article  ADS  Google Scholar 

  53. Aksan, M.A., Yakinci, M.E., Guldeste, A.: Thin Solid Films 515, 8022 (2007)

    Article  ADS  Google Scholar 

  54. Martinez, H., Marino, A., Rodriguez, J.E.: Physica C 408–410, 568 (2004)

    Article  Google Scholar 

  55. Awana, V.P.S., Menon, L., Malik, S.K.: Phys. Rev. B 53, 2245 (1996)

    Article  ADS  Google Scholar 

  56. Yildirim, G., Bal, S., Yucel, E., Dogruer, M., Akdogan, M., Varilci, A., Terzioglu, C.: J. Supercond. Nov. Magn. (2011). doi:10.1007/s10948-011-1324-0

    Google Scholar 

  57. Ozkurt, B., Ozcelik, B.: J. Low Temp. Phys. 156, 22 (2009)

    Article  ADS  Google Scholar 

  58. Yadav, C.S., Paulose, P.L.: New J. Phys. 11, 103046 (2009)

    Article  ADS  Google Scholar 

  59. Wang, Y., Wen, H.H.: Europhys. Lett. 81, 57007 (2008)

    Article  ADS  Google Scholar 

  60. Olson, C.J., Reichhardt, C., Nori, F.: Phys. Rev. B 56, 6175 (1997)

    Article  ADS  Google Scholar 

  61. Chen, X.J., Struzhkin, V., Wu, Z., Lin, H.Q., Hemley, R.J., Mao, H.K.: Proc. Natl. Acad. Sci. USA 104, 3732 (2007)

    Article  ADS  Google Scholar 

  62. Kusevic, I., Babic, E., Marohnic, Z., Ivkov, J., Liu, H.K., Dou, S.X.: Physica C 235–240, 3035 (1993)

    Google Scholar 

  63. Liu, H.K., Guo, Y.C., Dou, S.X., Cassidy, S.M., Cohen, L., Perkins, G.K., Caplin, A.D.: Physica C 213, 95 (1993)

    Article  ADS  Google Scholar 

  64. Kucera, J.T., Orlando, T.P., Virshup, G., Eckstein, J.N.: Phys. Rev. B 46, 11004 (1992)

    Article  ADS  Google Scholar 

  65. Yamasaki, H., Endo, K., Kosaka, S., Umeda, M., Yoshida, S., Kajimura, K.: Phys. Rev. Lett. 70, 3331 (1993)

    Article  ADS  Google Scholar 

  66. Abou-Aly, A.I., Mostafa, M.F., Ibrahim, I.H., Awad, R., Al-Hajji, M.A.: Supercond. Sci. Technol. 15, 938 (2002)

    Article  ADS  Google Scholar 

  67. Sung, H.H., Yang, H.C., Chen, H.C., Horng, H.E., Yao, B.C.: Chin. J. Phys. 30, 247 (1992)

    Google Scholar 

  68. Passos, C.A.C., Orlando, M.T.D., Fernandes, A.A.R., Oliveira, F.D.C., Simonetti, D.S.L., Fardin, J.F., Belich, H. Jr., Ferreira, M.M. Jr.: Physica C 419, 25 (2005)

    Article  ADS  Google Scholar 

  69. Pu, M.H., Feng, Y., Zhang, P.X., Wang, J.X., Du, J.J., Zhou, L.: Physica C 412–414, 467 (2004)

    Article  Google Scholar 

  70. Paradhan, A.K., Muralidhar, M., Feng, Y., Murakami, M., Nakao, K., Koshizuka, N.: Phys. Rev. B 64, 172505 (2001)

    Article  ADS  Google Scholar 

  71. Geshkenbein, V., Larkin, A., Feigelman, M., Vinokur, V.: Physica C 162–164, 239 (1989)

    Article  Google Scholar 

  72. Noetzel, R., Westerholt, K.: Phys. Rev. B 58, 15108 (1998)

    Article  ADS  Google Scholar 

  73. Soulen, R.J. Jr., Wolf, S.A.: Physica C 1–2, 95 (1990)

    Article  ADS  Google Scholar 

  74. Moodera, J.S., Meservey, R., Tkaczyk, J.E., Hao, C.X., Gibson, G.A., Tedrow, P.M.: Phys. Rev. B 37, 619 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yildirim, G., Bal, S. & Varilci, A. Effect of Magnetic Field Direction on Magnetoresistivity, Activation Energy, Irreversibility and Upper Critical Field of Bi-2212 Thin Film Fabricated by DC Sputtering Method. J Supercond Nov Magn 25, 1665–1671 (2012). https://doi.org/10.1007/s10948-012-1497-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-012-1497-1

Keywords

Navigation