Skip to main content
Log in

Magnetocaloric Effect in La1−x Cd x MnO3

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Calculations of the magnetocaloric effect for La1−x Cd x MnO3 (LSCM) upon 0.05 T magnetic field variation have been carried out. It is found that magnetic entropy change distribution of the LSCM is much more uniform than that of gadolinium. This feature is desirable for an Ericson-cycle magnetic refrigerator. Furthermore, at different concentrations of Cd, the temperature range between 150 K and room temperature can be covered using the La1−x Cd x MnO3 system. Therefore, the LSCM system is beneficial for manipulating magnetocaloric refrigeration that occurs in various temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. de Oliveira, N.A., von Ranke, P.J.: Phys. Rep. 489, 89 (2010)

    Article  ADS  Google Scholar 

  2. Hamad, M.A.: Theoretical work on magnetocaloric effect in La0.75Ca0.25MnO3. J. Adv. Ceram. 1, 290–295 (2012)

    Article  Google Scholar 

  3. Hamad, M.A.: Detecting giant electrocaloric effect in Sr x Ba1−x Nb2O6 single crystals. Appl. Phys. Lett. 100, 192908 (2012)

    Article  ADS  Google Scholar 

  4. Hamad, M.A.: Magnetocaloric effect in polycrystalline Gd1−x Ca x BaCo2O5.5. Mater. Lett. 82, 181 (2012)

    Article  Google Scholar 

  5. Hamad, M.A.: Investigations on electrocaloric properties of [111] oriented 0.955PbZn1/3Nb2/3O3–0.045PbTiO3 single crystals. Phase Transit. (2012). doi:10.1080/01411594.2012.674527

    Google Scholar 

  6. Hamad, M.A.: Magnetocaloric effect in Ge0.95Mn0.05 films. J. Supercond. Nov. Magn. 26, 449–453 (2013)

    Article  Google Scholar 

  7. Hamad, M.A.: Theoretical investigations on electrocaloric properties of relaxor ferroelectric 0.9PbMg1/3Nb2/3O3–0.1PbTiO3 thin film. J. Comput. Electron. 11, 344–348 (2012)

    Article  Google Scholar 

  8. Hamad, M.A.: Magnetocaloric effect of perovskite manganites Ce0.67Sr0.33MnO3. J. Supercond. Nov. Magn. (2013). doi:10.1007/s10948-013-2124-5

    Google Scholar 

  9. Hamad, M.A.: Calculation of electrocaloric properties of ferroelectric SrBi2Ta2O9. Phase Transit. 85, 159 (2012)

    Article  Google Scholar 

  10. Hamad, M.A.: Giant electrocaloric effect of (100) PMN–PT 68/32 thin film. Philos. Mag. Lett. (2013). doi:10.1080/09500839.2013.779759

    Google Scholar 

  11. Hamad, M.A.: Magnetocaloric properties of La0.6Ca0.4MnO3. J. Therm. Anal. Calorim. (2012). doi:10.1007/s10973-012-2723-6

    Google Scholar 

  12. Hamad, M.A.: Theoretical work on magnetocaloric effect in ceramic and sol–gel La0.67Ca0.33MnO3. J. Therm. Anal. Calorim. 111, 1251–1254 (2013)

    Article  Google Scholar 

  13. Hamad, M.A.: AIP Adv. 3, 032115 (2013)

    Article  ADS  Google Scholar 

  14. Hamad, M.A.: Prediction of energy loss of Ni0.58Zn0.42Fe2O4 nanocrystalline and Fe3O4 nanowire arrays. Jpn. J. Appl. Phys. 49, 085004 (2010)

    Article  ADS  Google Scholar 

  15. Hamad, M.A.: Calculations on nanocrystalline CoFe2O4 prepared by polymeric precursor method. J. Supercond. Nov. Magn. 26, 669–673 (2013)

    Article  Google Scholar 

  16. Hao, C., Zhao, B., Huang, Y., Kuang, G., Sun, Y.: J. Alloys Compd. 509, 5877–5881 (2011)

    Article  Google Scholar 

  17. Tang, W., Lu, W., Luo, X., Wang, B., Zhu, X., Song, W., Yang, Z., Sun, Y.: J. Magn. Magn. Mater. 322, 2360–2368 (2010)

    Article  ADS  Google Scholar 

  18. Hamad, M.A.: Prediction of thermomagnetic properties of La0.67Ca0.33MnO3 and La0.67Sr0.33MnO3. Phase Transit. 85, 106 (2012)

    Article  Google Scholar 

  19. Dhahri, A., Dhahri, J., Zemni, S., Oumezzine, M., Said, M., Vincent, H.: J. Alloys Compd. 450, 12–17 (2008)

    Article  Google Scholar 

  20. Pecharsky, V.K., Gschneidner, K.A. Jr.: J. Magn. Magn. Mater. 200, 44 (1999)

    Article  ADS  Google Scholar 

  21. Bohigas, X., Tejada, J., del Barco, E., Zhang, X.X., Sales, M.: Appl. Phys. Lett. 73, 390 (1998)

    Article  ADS  Google Scholar 

  22. Guo, Z.B., Du, Y.W., Zhu, J.S., Huang, H., Ding, W.P., Feng, D.: Appl. Phys. Lett. 78, 1142 (1997)

    Article  Google Scholar 

  23. Radaelli, P.G., Cox, D.E., Marezio, M., Cheong, S.W., Schiffer, P.E., Ramirez, A.P.: Phys. Rev. Lett. 75, 4488 (1995)

    Article  ADS  Google Scholar 

  24. Kim, K.H., Gu, J.Y., Choi, H.S., Park, G.W., Noh, T.W.: Phys. Rev. Lett. 77, 1877 (1996)

    Article  ADS  Google Scholar 

  25. Tang, T., Gu, K.M., Cao, Q.Q., Wang, D.H., Zhang, S.Y., Du, Y.W.: J. Magn. Magn. Mater. 222, 110 (2000)

    Article  ADS  Google Scholar 

  26. Phan, M.H., Tian, S.B., Yu, S.C., Ulyanov, A.N.: J. Magn. Magn. Mater. 256, 306 (2003)

    Article  ADS  Google Scholar 

  27. Sun, Y., Tong, W., Zhang, Y.H.: J. Magn. Magn. Mater. 232, 205 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud A. Hamad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamad, M.A. Magnetocaloric Effect in La1−x Cd x MnO3 . J Supercond Nov Magn 26, 3459–3462 (2013). https://doi.org/10.1007/s10948-013-2189-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-013-2189-1

Keywords

Navigation