Skip to main content
Log in

Effect of Fe2O3 Nano-Oxide Addition on the Superconducting Properties of the (Bi,Pb)-2223 Phase

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The effect of different weight percentages of nano-Fe2O3 on the properties of Bi1.8Pb0⋅4Sr2Ca2Cu3O10+δ superconducting phase was studied. Phase formation, elemental real contents and granular microstructure of the investigated samples were carried out using X-Ray powder Diffraction (XRD), Energy Dispersive X-ray emission (EDX), Proton Induced X-ray Emission (PIXE), Rutherford Backscattering Spectrometry (RBS) and Scanning Electron Microscopy (SEM). XRD data indicated that the volume fraction of (Bi,Pb)-2223 decreased as nano-Fe2O3 wt.% increased. PIXE and EDX analyses showed that the PIXE technique is more accurate for detecting the nano-Fe2O3 than the EDX technique. The oxygen content, determined from RBS, decreased as nano-Fe2O3 wt.% increased.

The superconducting properties of the prepared samples were investigated using electrical resistivity and IV curves, at 77 K, measurements. It was found that the granular structure and the critical current density were improved up to 0.2 wt.% of nano-Fe2O3 addition. The superconducting transition temperature T c decreased as nano-Fe2O3 wt.% increased, attributing this to the decrease of the volume fraction or trapping of mobile holes. The enhancement rate of J c for (Bi,Pb)-2223 phase added with nano-Fe2O3 is 9 %, which is lower than that of (Bi,Pb)-2223 phase added with SnO2, Ag2O, Al2O3 and MgO. This means that the nano-magnetic addition has the lowest enhancement rate in both J c and T c.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Maeda, H., Tanaka, Y., Fukotomi, M., Asano, T.: Jpn. J. Appl. Phys. 27, 209 (1988)

    Article  ADS  Google Scholar 

  2. Tarascon, J.M., Lepage, Y., Greene, L.H., Bagley, B.G., Barboux, P., Hwang, D.M., Hull, G.W., Makinnon, W., Giroud, R.M.: Phys. Rev. B 38, 2504 (1988)

    Article  ADS  Google Scholar 

  3. Sunshine, S.A., Siegrist, T., Schneemeyer, L.F., Murphy, D.W., Cava, R.J., Batlogg, B., van Dover, R.B., Fleming, R.M., Glarum, S.H., Nakahara, S.R., Farrow Krajewski, J.J., Zahurak, S.M., Waszczak, J.V., Marshall, J.H., Marsh, P.L., Rupp, W. Jr., Peck, W.F.: Phys. Rev. B 893, 38 (1988)

    Google Scholar 

  4. Tarascon, J.M., Mckinnon, W.R., Barboux, P., Hwang, D.M., Bagly, B.G., Greene, L.H., Hull, G.W.Y., Lepage Stoffel, N., Giroud, M.: Phys. Rev. B 38, 8885 (1988)

    Article  ADS  Google Scholar 

  5. Hatano, T., Aoto, K., Ikeda, S., Nakamura, K., Ogawa, K.: Jpn. J. Appl. Phys. 27, L2055 (1988)

    Article  ADS  Google Scholar 

  6. Bian, W., Zhu, Y., Wang, Y.L., Suenaga, M.: Physica C 250, 119 (1995)

    Article  ADS  Google Scholar 

  7. Zhang, H., Zhao, Y., Zhou, X.Y., Zhang, Q.R.: Phys. Rev. B 42, 2248 (1990)

    Article  ADS  Google Scholar 

  8. Takano, M., Takada, J., Oda, K., Kitaguchi, H., Miura, Y., Ikeda, Y., Tomii, Y., Mazaki, H.: Jpn. J. Appl. Phys. 1041, 27 (1988)

    Google Scholar 

  9. Yamada, Y., Murase, S.: Jpn. J. Appl. Phys. 996, 27 (1988)

    Google Scholar 

  10. Abou-Aly, A.I., Abdel Gawad, M.M.H., Awad, R., G-Eldeen, I.: J. Supercond. Nov. Magn. 24, 2077 (2011)

    Article  Google Scholar 

  11. Jia, Z.Y., Tang, H.Z., Yang, Q.Y., Xing, T., Wang, Y.Z., Qiao, G.W.: Physica C 337, 130 (2000)

    Article  ADS  Google Scholar 

  12. Däumling, M., Grivel, J.C., Hensel, B., Flükiger, R.: Physica C 219, 429 (1994)

    Article  ADS  Google Scholar 

  13. Majewski, P., Elschner, S., Hettich, B., Lang, C., Kaesche, S., Aldinger, F.: Supercond. Sci. Technol. 7, 514 (1994)

    Article  ADS  Google Scholar 

  14. Tanaka, Y., Matsumoto, F., Maeda Ishizuka, H.M.: IEEE Trans. Appl. Supercond. 5, 1158 (1995)

    Article  Google Scholar 

  15. Kazin, P.E., Jansen, M., Larrea, A., de la Fuente, G.F., Tretyakov, Y.D.: Physica C 253, 391 (1995)

    Article  ADS  Google Scholar 

  16. Civale, L., Marwick, A.D., Wheeler, R. IV, Kirk, M.A., Carter, W.L., Riley, G.N., Malozemoff, A.P., Jr.: Physica C 208, 137 (1993)

    Article  ADS  Google Scholar 

  17. Krusin-Elbanm, L., Thompson, J.R., Wheeler, R., Marwick, A.D., Li, C., Patel, S., Shaw, D.T., Lisowski, P., Ullmann, J.: Appl. Phys. Lett. 64, 3331 (1994)

    Article  ADS  Google Scholar 

  18. Guilmeau, E., Andrzejewski, B., Noudem, J.G.: Physica C 387, 382 (2003)

    Article  ADS  Google Scholar 

  19. Annabi, M., M’chirgui, A., Ben Azzouz, F., Zouaoui, M., Ben Salem, M.: Physica C 25, 405 (2004)

    Google Scholar 

  20. Wee, S.H., Goyal, A., Li, J., Zuev, Y.L., Cook, S., Heatherly, L.: Supercond. Sci. Technol. 20, 789 (2007)

    Article  ADS  Google Scholar 

  21. Ghattas, A., Zouaoui, M., Annabi, M., Madani, A., Ben Azzouz, F., Ben Salem, M.: J. Phys. Conf. Ser. 97, 012179 (2008)

    Article  ADS  Google Scholar 

  22. Ghattas, A., Annabi, M., Zouaoui, M., Ben Azzouz, F., Ben Salem, M.: Physica C 31, 468 (2008)

    Google Scholar 

  23. Baqiah, H., Halim, S.A., Adam, M.I., Chen, S.K., Ravandi, S.S.H., Faisal, M.A.M., Kamarulzaman, M.M., Hanif, M.: Solid State Sci. Technol. 17, 81 (2009)

    Google Scholar 

  24. Gurbich, A.F.: Nucl. Instrum. Methods 129, 311 (1997)

    Article  Google Scholar 

  25. Mayer, M.: SIMNRA User’s Guide, Report IPP 9/113, Max-Planck-Institut für Plasmaphysik Garching, Germany (1997)

  26. Repaci, J.M., Kwon, C., Jiang, X.G., Li, Q., Glover, R.E., Lobb, C.J.: Bull. Am. Phys. Soc. 40, 445 (1995)

    Google Scholar 

  27. Pandey, D., Mahesh, R., Singh, A., Tiwari, V.: Solid State Commun. 76, 655 (1990)

    Article  ADS  Google Scholar 

  28. Kong, W., Abd-Shukor, R.: Solid State Sci. Technol. 1, 15 (2007)

    Google Scholar 

  29. Abou Aly, A.I., Mohammed, N.H., Awad, R., Motaweh, H.A., El-Said Bakeer, D.: J. Supercond. Nov. Magn. 25, 1463 (2012)

    Google Scholar 

  30. Roumié, M., Awad, R., Ibrahim, I.H., Zein, A., Zahraman, K., Nsouli, B.: Nucl. Instrum. Methods 266, 133 (2008)

    Article  Google Scholar 

  31. Ramos, A.R., Paul, A., Rijniers, L., Da Silva, M.F., Soares, J.C.: Nucl. Instrum. Methods 190, 95 (2002)

    Article  Google Scholar 

  32. Mellekh, A., Zouaoui, M., Ben Azzouz, F., Annabi, M., Ben Salem, M.: Solid State Commun. 140, 318 (2006)

    Article  ADS  Google Scholar 

  33. Mohammed, N.H., Awad, R., Abou-Aly, A.I., Ibrahim, I.H., Roumié, M., Rekaby, M.: J. Supercond. Nov. Magn. 25, 144 (2012)

    Google Scholar 

  34. Isber, S., Awad, R., Abou-Aly, A.I., Tabbal, M., Kaouar, J.M.: Supercond. Sci. Technol. 18, 311 (2005)

    Article  ADS  Google Scholar 

  35. Anderson, P.W.: Phys. Rev. Lett. 67, 2092 (1991)

    Article  ADS  Google Scholar 

  36. Abou-Aly, A.I., Awad, R., Ibrahim, I.H., Abdeen, W.: J. Alloys Compd. 481, 462 (2009)

    Article  Google Scholar 

  37. Terzioglu, C., Yilmazlar, M., Ozturk, O., Yanmaz, E.: Physica C 423, 119 (2005)

    Article  ADS  Google Scholar 

  38. Tung, L.-C., Chen, J.C., Wu, M.K., Guan, W.: Phys. Rev. B 59, 4504 (1999)

    Article  ADS  Google Scholar 

  39. Salamati, H., Kameli, P.: Solid State Commun. 125, 407 (2003)

    Article  ADS  Google Scholar 

  40. Zhang, J.C., Liu, F.Q., Cheng, G.S., Shang, J.X., Liu, J.Z., Cao, S.X., Liu, Z.X.: Phys. Lett. A 201, 70 (1995)

    Article  ADS  Google Scholar 

  41. Miceli, P.F., Tarascon, J.M., Greene, L.H., Barbou, X.P., Rotella, F.J., Jorgensen, J.D.: Phys. Rev. B 37, 5932 (1988)

    Article  ADS  Google Scholar 

  42. Cao, S., Li, L., Liu, F., Li, W., Chi, C., Jing, C., Zhang, J.: Supercond. Sci. Technol. 18, 606 (2005)

    Article  ADS  Google Scholar 

  43. Awana, V.P.S., Malik, S.K., Yelon, W.B., Cardoso, C.A., de Lima, O.F., Gupta, A., Sedky, A., Narlikar, A.V.: Physica C 338, 197 (2000)

    Article  ADS  Google Scholar 

  44. Barik, H.K., Ghorai, S.K., Bhattacharya, S., Kilian, D., Chaudhuri, B.K.: J. Mater. Res. 15, 1076 (2000)

    Article  ADS  Google Scholar 

  45. Thomas, M., Katona, W., Pierson, S.: Physica C 270, 242 (1996)

    Article  ADS  Google Scholar 

  46. Farbod, M., Batvandi, M.R.: Physica C 471, 112 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was performed in the superconductivity and metallic-glass lab, Physics Department, Faculty of Science, Alexandria University, Alexandria, Egypt. The authors are grateful for the support of Accelerator Laboratory, Lebanese Atomic Energy Commission, CNRS, Beirut, Lebanon, for PIXE and RBS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Awad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roumié, M., Marhaba, S., Awad, R. et al. Effect of Fe2O3 Nano-Oxide Addition on the Superconducting Properties of the (Bi,Pb)-2223 Phase. J Supercond Nov Magn 27, 143–153 (2014). https://doi.org/10.1007/s10948-013-2288-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-013-2288-z

Keywords

Navigation