Skip to main content
Log in

X-Ray Diffraction and Cation Distribution Studies in Zinc-Substituted Nickel Ferrite Nanoparticles

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Structural and cation distribution studies on Ni1−x Zn x Fe2O4 (with x=0.0, 0.2, 0.4, 0.6, 0.8, and 1.0) ferrite nanoparticles by using X-ray diffraction analysis are reported. In this work the Nickel–Zinc ferrites nanoparticles are synthesized by sol–gel auto combustion using respective metal nitrates and citric acid as fuel for the auto combustion reaction. Formation of ferrite nanoparticles having single-phase spinel structure is evident from the obtained X-ray diffraction patterns. Lattice constant values of the Ni1−x Zn x Fe2O4 ferrite system are found to increase with increase of zinc substitution x. Broad and intense XRD peaks in the patterns indicate the nanocrystalline nature of the produced ferrite samples. Average particle size calculated from most intense Bragg’s reflection (311) using Debye–Scherrer’s formula is found to be 30 nm. The particle size is found to decrease with increase in zinc substitution x. Observed X-ray density is found to decrease with increase in zinc substitution x. Bulk density, porosity, and unit cell volume are also calculated from the XRD data. Distribution of metal cations in the spinel structure estimated from X-ray diffraction data show that along with Ni2+ ions most of the Zn2+ ions also occupy the octahedral [B] sites, which are attributed to nanosize dimensions of the ferrite samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nikumbh, A.K., Nagawade, A.V., Gugale, G.S., Chaskar, M.G., Bakare, P.P.: J. Mater. Sci. 37, 3 (2002)

    Article  Google Scholar 

  2. Sickafus, K.E., Wills, J.M., Grimes, N.W.: J. Am. Ceram. Soc. 82, 12 (1999)

    Google Scholar 

  3. Wei, Q.M., Li, J.B., Chen, Y.J.: J. Mater. Sci. 36, 21 (2001)

    Article  Google Scholar 

  4. Whinfery, C.G., Eckort, D.W., Tauber, A.: J. Am. Chem. Soc. 82, 11 (1960)

    Google Scholar 

  5. Raghavender, A.T., Kulkarni, R.G., Jadhav, K.M.: Chin. J. Phys. 48, 4 (2010)

    Google Scholar 

  6. Sawant, S.R., Patil, R.N.: Ind. J. Pure Appl. Phys. 21 (1983)

  7. Cheng, S.L., Lin, J.G., Kuo, K.M., Chern, G.: J. Appl. Phys. 111, 7 07A321 (2012)

    Google Scholar 

  8. Singh, V.K., Khatri, N.K., Lokanathan, S.: Pramana 16, 4 (1981)

    Google Scholar 

  9. Wu, C.C., Mason, T.O.: J. Am. Ceram. Soc. 64, 9 (1981)

    Article  Google Scholar 

  10. Tang, G.D., Ji, D.H., Yao, Y.X., Liu, S.P., Li, Z.Z., Qi, W.H., Han, Q.J., Hou, X., Hou, D.L.: Appl. Phys. Lett. 98, 072511 (2011)

    Article  ADS  Google Scholar 

  11. Rietveld, H.: J. Appl. Crystallogr. 2 (1969)

  12. Young, R.A.: The Rietveld Method. Oxford University Press, Oxford (1993)

    Google Scholar 

  13. Gonzalez, J.M.R., Arean, C.O.: J. Chem. Soc. 2155 (1985)

  14. Furuhashi, H., Inagaki, M., Naka, S.: J. Inorg. Chem. 35 (1973)

  15. Jadhav, K.M., Kawade, V.B., Modi, R.B., Bichile, G.K., Kulkarni, R.G.: Physica B, Condens. Matter 291(3–4) (2000)

  16. Modi, K.B., Rangolia, M.K., Chhantbar, M.C., Joshi, H.H.: J. Mater. Sci. 41(22) (2006)

  17. Ying, Y., Kim, J.M., Lee, Y.P., Kang, J.H.: J. Kor. Phys. Soc. 58(4) (2011)

  18. Kadam, G.B., Shelke, S.B., Jadhav, K.M.: J. Elect. Electron. Eng. 1(1) (2010)

  19. Verma, A., Dube, D.C.: J. Am. Ceram. Soc. 88(3) (2005)

  20. Deka, S., Joy, P.A.: Mater. Chem. Phys. 100(1) (2006)

  21. Naidu, V., Ahmed, S.K., Suganthi, M.: Int. J. Comput. Appl. 24(2), 0975–8887 (2011)

    Google Scholar 

  22. Shinde, A.B., Dhage, V.N., Jadhav, K.M.: Int. J. Eng. Adv. Technol. 2(3) (2013)

  23. Zhang, R., Huang, J., Zhao, J., Sun, Zh., Wang, Y.: Energy Fuels 21 (2007)

  24. Cullity, B.D.: Elements of X-Ray Diffraction 3rd edn, pp. 301–304. Chapman & Hall, London (2000)

    Google Scholar 

  25. Hankare, P.P., Patil, R.P., Sankpal, U.B., Jadhav, S.D., Mulla, I.S., Jadhav, K.M., Chougule, B.K.: J. Magn. Magn. Mater. 321(19) (2009)

  26. Smit, J., Wijn, H.P.J.: Ferrites, p. 233. Wiley, New York (1959)

    Google Scholar 

  27. Kumar, P., Mishra, P., Sahu, S.K.: Int. J. Sci. Eng. Res. 2(8) (2011)

  28. Upadhyay, Ch., Verma, H.C.: J. Appl. Phys. 95(10) (2004)

  29. Leung, L.K., Evans, B.J., Morrish, A.H.: Phys. Rev. B 8(29) (1973)

  30. Dung, N.K., Tuan, N.H.: VNU J. Sci. Math.-Phys. 25 (2009)

  31. Ghazanfar, U., Siddiqi, S.A., Abbas, G.: Mater. Sci. Eng., B 118(1–3) (2005)

  32. Haque, M.M., Huq, M., Hakim, M.A.: Ind. J. Phys. 78A(3) (2004)

  33. Sathishkumar, G., Venkataraju, Ch., Sivakumar, K.: Mater. Sci. Appl. 1 (2010)

  34. Attia, S.M.: Egyp. J. Solids 29(2) (2006)

  35. Pandit, A.A., Shitre, A.R., Shengule, D.R., Jadhav, K.M.: J. Mater. Sci. 40(2) (2005)

  36. Shannon, R.D.: Acta Crystallogr. A, Found Crystallogr. 32 (1976)

  37. Sharifi, I., Shokrollahi, H.: J. Magn. Magn. Mater. 324 (2012)

  38. Buerger, M.G.: Crystal Structure Analysis. Wiley, New York (1960)

    Google Scholar 

  39. Birajdar, D.S., Devatwal, U.N., Jadhav, K.M.: J. Mater. Sci. 37 (2002)

  40. Ohinishi, H., Teranishi, T.: J. Phys. Soc. Jpn. 16 (1961)

  41. Pandit, A.A., More, S.S., Dorik, R.G., Jadhav, K.M.: Bull. Mater. Sci. 26(5) (2003)

  42. Porta, P., Stone, F.S., Turner, R.G.: J. Solid State Chem. 11 (1974)

  43. Kadam, G.B., Shelke, S.B., Jadhav, K.M.: J. Electr. Electron. Eng. 1(1) (2010)

  44. Sattar, A.A.: J. Mater. Sci. 39 (2004)

  45. Ateia, E.: Egypt J. Solids 29(2) (2006)

  46. Sebastian, M.T.: Dielectric Materials for Wireless Communication, 1st edn. Elsevier, Amsterdam (2008)

    Google Scholar 

  47. Hamdeh, H.H., Ho, J.C., Oliver, S.A., Willey, R.J., Kramer, J., Chen, Y.Y., Lin, S.H., Yao, Y.D., Daturi, M., Busca, G.: IEEE Trans. Magn. 31(6) (1995)

  48. Battle, J., Clark, T., Evans, B.J.: J. Phys., IV 7 (1997)

  49. Navrotsky, A., Kleppa, O.J.: J. Inorg. Nucl. Chem. 30, 479 (1968)

    Article  Google Scholar 

  50. Deraz, N.M., Alarifi, A.: Int. J. Electrochem. Sci. 7 (2012)

  51. Singh, R.K., Upadhyay, Ch., Layek, S., Yadav, A.: Int. J. Eng. Sci. Technol. 2(8) (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Jadhav.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurmude, D.V., Barkule, R.S., Raut, A.V. et al. X-Ray Diffraction and Cation Distribution Studies in Zinc-Substituted Nickel Ferrite Nanoparticles. J Supercond Nov Magn 27, 547–553 (2014). https://doi.org/10.1007/s10948-013-2305-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-013-2305-2

Keywords

Navigation