Skip to main content
Log in

Effect of Ni Doping on Structural, Optical, and Magnetic Properties of Fe-Doped ZnO Nanoparticles

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In the present work, pure ZnO, Zn 0.99Fe 0.01O (ZFO), Zn 0.99Ni 0.01O (ZNO) and Zn 0.98Fe 0.01Ni 0.01O (ZFNO) dilute magnetic semiconductors were successfully synthesized by using the wet coprecipitation method. Pure and doped samples were characterized by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, UV-Vis spectroscopy and vibrating sample magnetometer. The X-ray diffraction (XRD) analysis of pure and doped samples confirms the formation of a hexagonal wurtzite structure, without formation of any other secondary and impurity phases. Surface morphology of pure and doped ZnO nanoparticle samples performed by scanning electron microscopy (SEM) reveals the formation of spherical nanocrystallites with clear and welldefined boundaries. Energy-dispersive X-ray spectroscopy (EDS) indicates the successful substitution of dopant Fe 2+ and Ni 2+ in the lattice site of Zn 2+ and results in the formation of single-phase Zn 1−xy Fe x Ni y O. The UV-visible absorption spectra of all doped samples showed blueshift in absorption edge as compared to undoped ZnO nanoparticles. The magnetic characterization reveals and confirms the roomtemperature ferromagnetism in all doped and codoped samples. Magnetization saturation is enhanced in Ni–Fe codoped sample as compare with individual Fe and Nidoped ZnO samples which further reveals that exchange interaction between Fe and Ni ions dominates over the Fe–Fe and Ni–Ni ion interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., Von Molnar, S., Roukes, M.L., Chichel- kanova, A.Y., Treger, D.M.: Spintronics: A spin-based electronics vision for the future. Science (2001). doi:10.1126/science.1065389

    Google Scholar 

  2. Ohno, H.: Making nonmagnetic semiconductors ferromagnetic. Science (1998). doi:10.1126/science.281.5379.951

    Google Scholar 

  3. Prinz, G.A.: Magnetoelectronics. Science (1998). doi:10.1126/science.282.5394.1660 10.1126/science.282.5394.1660

  4. Ghosh, S., Mandal, K.: Study of Zn 1−x Co x O (0.02 <x< 0.08) dilute magnetic semiconductor prepared by mechanosynthesis route. J. Magn. Magn. Mater. (2010). doi:10.1016/j.jmmm.2010.01.017 10.1016/j.jmmm.2010.01.017

  5. Dietl, T., Ohno, H., Matsukura, F., Cibert, J., Ferrand, D.: Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science (2000). doi:10.1103/10.1126/science.287.5455.101 10.1103/10.1126/science.287.5455.101

  6. Wesselinowa, J.M., Aposto, A.T.: A possibility to obtain room temperature ferromagnetism by transition metal doping of ZnO nanoparticles. J. Appl. Phys. (2010). doi:10.1063/1.3329457

    Google Scholar 

  7. Karmakar, D., Mandal, S.K., Kadam, R.M., Paulose, P.L., Rajarajan, A.K., Nath, T.K., Das, A.K., Dasgupta, I., Das, G.P.: Ferromagnetism in Fe-doped ZnO nanocrystals: Experiment and theory. Phys. Rev. B (2007). doi:10.1103/PhysRevB.75.144404

    MATH  Google Scholar 

  8. Xingyan, X., Chuanbao, C.: Structure and ferromagnetic properties of Co-doped ZnO powders. J. Magn. Magn. Mater. (2009). doi:10.1016/j.jmmm.2009.01.017

    MATH  Google Scholar 

  9. Martínez, B., Sandiumenge, F., Balcells, L., Arbiol, J., Sibieude, F., Monty, C.: Structure and magnetic properties of Co-doped ZnO nanoparticles. Phys. Rev. B (2005). doi:10.1103/PhysRevB.72.165202 10.1103/PhysRevB.72.165202

  10. Duan, L.B., Rao, G.H., Yu, J., Wang, Y.C.: Ferromagnetism of lightly Co-doped ZnO nanoparticles. Solid State Commun. (2008). doi:10.1016/j.ssc.2008.01.014

    Google Scholar 

  11. Luo, J., Liang, J.K., Liu, Q.L., Liu, F.S., Zhang, Y., Sun, B.J., Rao, G.H.: Structure and magnetic properties of Mn-doped ZnO nanoparticles. J. Appl. Phys. (2005). doi:10.1063/1.1873058

    Google Scholar 

  12. Wang, J.B., Huang, G.J., Zhong, X.L., Sun, L.Z., Zhou, Y.C., Liu, E.H.: Raman scattering and high temperature ferromagnetism of Mn-doped ZnO nanoparticles. Appl. Phys. Lett. (2006). doi: 10.1063/1.2208564

    Google Scholar 

  13. Jayakumar, O.D., Gopalakrishnan, I.K., Sudakar, C., Kadam, R.M., Kulshreshtha, S.K.: Magnetization and structural studies of Mn doped ZnO nanoparticles: Prepared by reverse micelle method. J. Cryst. Growth (2007). doi:10.1016/j.jcrysgro.2006.12.030 10.1016/j.jcrysgro.2006.12.030

  14. Bhuiyan, M.R.A., Rahman, M.K.: Synthesis and characterization of Ni doped ZnO nanoparticles. I. J. Eng. Manuf. (2014). doi:10.5815/ijem.2014.01.02

    Google Scholar 

  15. Vijayaprasath, G., Murugan, R., Ravi, G.: Structural, optical and magnetic properties of Ni doped ZnO nanostructures prepared by co-precipitation method. In. J. Chem. Tech. Res. 6, 3385–3387 (2014)

  16. Katoon, S., Ahmad, T.: Synthesis, optical and magnetic properties of Ni-doped ZnO nanoparticles. J. Mater. Sci. Eng B 2(6), 325–333 (2012)

    Google Scholar 

  17. Jadhav, J., Patange, M, Biswas, S.: Ferromagnetic Ni-doped ZnO nanoparticles synthesized by a chemical precursor method. Carbon – Sci. Tech. 5(2), 269–274 (2013)

    Google Scholar 

  18. John Kennady Vethanathan, S., Perumal, S., Meenakshi Sundar, S., Priscilla Koilpillai, D., Karpagavalli, S., Suganthi, A.: Structural and magnetic properties of nickel and cobalt doped ZnO nanoparticles synthesized by solvothermal route. Int. J. Adv. Sci. Tech. Res. 6(3), 856–865 (2014)

    Google Scholar 

  19. Mandal, S.K., Das, A.K., Nath, T.K., Karmakar, D., Satpati, B.: Microstructural and magnetic properties of ZnO: TM (TM = Co, Mn) diluted magnetic semiconducting nanoparticles. J. Appl. Phys. (2006). doi:10.1063/1.2360387

    Google Scholar 

  20. Bilecka, I., Luo, L., Djerdj, I., Rossell, M.D., Jagodi, M., Jaglicic, Z., Masubuchi, Y., Kikkawa, S., Niederberger, M.: Microwave-assisted nonaqueous sol–gel chemistry for highly concentrated ZnO-based magnetic semiconductor nanocrystals. J.Phys. Chem. C (2011). doi:10.1021/jp108050w

    Google Scholar 

  21. Yu, X., Meng, D., Liu, C., He, X., Wang, Y., Xie, J.: Structure and ferromagnetism of Fe-doped and Fe- and Co-codoped ZnO nanoparticles synthesized by homogeneous precipitation method (2012). doi: 10.1016/j.matlet.2012.07.040

  22. Sharma, V.K., Najim, M., Srivastava, A.K., Varma, G.D.: Structural and magnetic studies on transition metal (Mn, Co) doped ZnO nanoparticles. J. Magn. Magn. Mater. (2012). doi:10.1016/j.jmmm.2011.08.061 10.1016/j.jmmm.2011.08.061

  23. Chand, P., Gaur, A., Kumar, A.: Effect of Cr and Fe doping on the structural and optical properties of ZnO nanostructures. Int. J. Chem. Nucl. Mater. Metall. Eng. 8, 1238–1241 (2014)

    Google Scholar 

  24. Wu, X., Wei, Z., Zhang, L., Zhang, C., Yang, H., Jiang, J.: Synthesis and characterization of Fe and Ni co-doped ZnO nanorods synthesized by a hydrothermal method. Ceram. Int. 40, 14635–14640 (2014)

  25. Kumar, S., Kim, Y.J., Koo, B.H., Choi, H., Lee, C.G.: Ferromagnetism in chemically-synthesized Co-doped ZnO. J. Korean Phys. Soc. 55(3), 1060–1064 (2009)

    ADS  Google Scholar 

  26. Aydın, C., Abd El-Sadek, M.S., Zheng, K., Yahia, I.S., Yakuphanoglu, F.: Synthesis, diffused reflectance and electrical properties of nanocrystalline Fe-doped ZnO via sol–gel calcination technique. Opt. Laser Technol. 48, 447–452 (2013)

    Article  ADS  Google Scholar 

  27. Morales, A.E., Mora, E.S., Pal, U.: Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Revista Mexicana de Fisica Supplement 53, 18–22 (2007)

    Google Scholar 

  28. Zhou, S., Potzger, K., Reuther, H., Kuepper, K., Skorupa, W., Helm, M., Fassbender, J.: Absence of ferromagnetism in V-implanted ZnO single crystals. J. Appl. Phys. 101, 09H109 (2007)

    Google Scholar 

  29. Sharma, V.K., Varma, G.D.: Fe clusters as origin of ferromagnetism in hydrogenated Zn 1−xFe xO (x = 0.02 & 0.05) samples. Adv. Mat. Lett. (2012). doi:10.5185/amlett.2011.7283

    Google Scholar 

  30. Bappaditya Pal, Giri, P.K.: Defect mediated magnetic interaction and high Tc ferromagnetism in Co doped ZnO nanoparticles. J. Nanosci. Nanotechnol. 11, 1–8 (2011)

  31. Santara, B., Giri, P.K., Dhara, S., Imakita, K, Fujii, M: Oxygen vacancy-mediated enhanced ferromagnetism in undoped and Fe-doped TiO 2 nanoribbons. J. Appl. Phys. Phys. D (2014). doi:10.1088/0022-3727/47/23/235304

    Google Scholar 

  32. Das, J., Mishra, D.K., Sahu, D.R., Roul, B.K.: Influence of Ni doping on magnetic behavior of Mn doped ZnO. Mater. Lett. 65(4), 598–601 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashi Bhushan Rana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal Singh, R.P., Hudiara, I.S., Panday, S. et al. Effect of Ni Doping on Structural, Optical, and Magnetic Properties of Fe-Doped ZnO Nanoparticles. J Supercond Nov Magn 28, 3685–3691 (2015). https://doi.org/10.1007/s10948-015-3183-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-015-3183-6

Keywords

Navigation