Skip to main content
Log in

Dielectric Properties of Nanocrystalline Zn-Doped Lithium Ferrites Synthesized by Microwave-Induced Glycine–Nitrate Process

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this study, nanocrystalline Li–Zn ferrites with the chemical composition of Li0.5Zn x Fe2.5−x O4 (where 0 ≤ x≤0.5) were synthesized by glycine–nitrate combustion process using glycine as a fuel, nitrate as an oxidizer, and microwave oven as a heat source. The as-synthesized powders were characterized using an X-ray diffraction technique. X-ray diffraction patterns show that nanocrystalline Li–Zn ferrite phase with a spinel structure has been formed successfully in all samples. Dielectric properties including dielectric constants, dielectric loss, AC conductivity, and complex dielectric impedance were measured in the frequency range 20 Hz–10 MHz using a LCR meter. Results show that dielectric constant, as well as dielectric loss, decreases with increasing frequency and then becomes roughly frequency independent at high frequencies. In contrast, AC conductivity follows an upward trend with frequency. Complex impedance spectroscopic studies show the presence of only one semicircle for all samples, suggesting the predominant effect of grain boundary property of the material. It is also found that substitution of Zn for Fe ions leads to a significant decrease in electrical conductivity due to decrease of ferrous and ferric ions available for the hopping process. Similarly, both dielectric constant and dielectric loss show reduction with the increase in Zn content as a result of the reduction of Fe2+/Fe3+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Batoo, K.M.: Study of dielectric and impedance properties of Mn ferrites. Phys. B 406, 382–387 (2011)

    Article  ADS  Google Scholar 

  2. Dar, M.A., Batoo, K.M., Verma, V., Siddiqui, W.A., Kotnala, R.K.: Synthesis and characterization of nano-sized pure and Al-doped lithium ferrite having high value of dielectric constant. J. Alloys Compd. 493, 553–560 (2010)

    Article  Google Scholar 

  3. Batoo, K.M., Kumar, S., Lee, C.G., Alimuddin: Study of dielectric and ac impedance properties of Ti doped Mn ferrites. Curr. Appl. Phys. 9, 1397–1406 (2009)

    Article  ADS  Google Scholar 

  4. Singh, N., Agarwal, A., Sanghi, S.: Dielectric relaxation, conductivity behavior and magnetic properties of Mg substituted Zn-Li ferrites. Curr. Appl. Phys. 11, 783–789 (2011)

    Article  ADS  Google Scholar 

  5. Hankare, P.P., Patil, R.P., Sankpal, U.B., Jadhav, S.D., Mulla, I.S., Jadhav, K.M., Chougule, B.K.: Magnetic and dielectric properties of nano phase manganese-substituted lithium ferrite. J. Magn. Magn. Mater. 321, 3270–3273 (2009)

    Article  ADS  Google Scholar 

  6. Hankare, P.P., Patil, R.P., Sankpal, U.B., Garadkar, K.M., Sasikala, R., Tripathi, A.K., Mulla, I.S.: Magnetic, dielectric and complex impedance spectroscopic studies of nanocrystalline Cr substituted Li-ferrite. J. Magn. Magn. Mater. 322, 2629–2633 (2010)

    Article  ADS  Google Scholar 

  7. Watawe, S.C., Sarwade, B.D., Bellad, S.S., Sutar, B.D., Chougule, B.K.: Microstructure, frequency and temperature-dependent dielectric properties of cobalt-substituted lithium ferrites. J. Magn. Magn. Mater. 214, 55–60 (2000)

    Article  ADS  Google Scholar 

  8. Mazen, S.A., Dawoud, H.A.: Temperature and composition dependence of dielectric properties in Li–Cu ferrite. Mater. Chem. Phys. 82, 557–566 (2003)

    Article  Google Scholar 

  9. Reddy, P.V.B., Ramesh, B., Reddy, C.G.: Electrical conductivity and dielectric properties of zinc substituted lithium ferrites prepared by sol–gel method. Phys. B 405, 1852–1856 (2010)

    Article  ADS  Google Scholar 

  10. Borhan, N., Gheisari, K.: Structural and magnetic properties of nanocrystalline lithium–zinc ferrite synthesized by microwave-induced glycine–nitrate process. J. Supercond. Nov. Magn. 27, 1483–1490 (2014)

    Article  Google Scholar 

  11. Gheisari, K., Bhame, S.D., Oh, J.T., Javadpour, S.: Comparative studies on the structure and magnetic properties of Ni–Zn ferrite powders prepared by glycine-nitrate auto-combustion process and solid state reaction method. J. Supercond. Nov. Magn. 26, 477–483 (2013)

    Article  Google Scholar 

  12. Hajarpour, S., Gheisari, Kh., Honarbakhsh Raouf, A.: Characterization of nanocrystalline Mg0.6Zn0.4Fe2O4 soft ferrites synthesized by glycine-nitrate combustion process. J. Magn. Magn. Mater. 329, 165–169 (2013)

    Article  ADS  Google Scholar 

  13. Bhandare, M.R., Jamadar, H.V., Pathan, A.T., Chougule, B.K., Shaikh, A.M.: Dielectric properties of Cu substituted Ni0.5−x Zn0.3Mg0.2Fe2O4 ferrites. J. Alloys Compd. 509, 113–118 (2011)

    Article  Google Scholar 

  14. Livingston, J.D.: Electronic Properties of Engineering Materials. Wiley, New York (1999)

    Google Scholar 

  15. Kadam, A.A., Shinde, S.S., Yadav, S.P., Patil, P.S., Rajpure, K.Y.: Structural, morphological, electrical and magnetic properties of Dy doped Ni–Co substitutional spinel ferrite. J. Magn. Magn. Mater 329, 59–64 (2013)

    Article  ADS  Google Scholar 

  16. Hussain, T., Siddiqi, S.A., Atiq, S., Awan, M.S.: Induced modify cations in the properties of Sr doped BiFeO3 multiferroics. Int. Mater. 23, 487–492 (2013)

    Google Scholar 

  17. Thakur, A., Mathur, P., Singh, M.: Study of dielectric behaviour of Mn–Zn nano ferrites. J. Phys. Chem. Solids 68, 378–381 (2007)

    Article  ADS  Google Scholar 

  18. Venudhar, Y.C., Mohan, K. S.: Dielectric behaviour of lithium–cobalt mixed ferrites. Mater. Lett. 54, 135–139 (2002)

    Article  Google Scholar 

  19. Hankare, P.P., Sankpal, U.B., Patil, R.P., Jadhav, A.V., Garadkar, K.M., Chougule, B.K.: Magnetic and dielectric studies of nanocrystalline zinc substituted Cu–Mn ferrites. J. Magn. Magn. Mater. 323, 389–393 (2011)

    Article  ADS  Google Scholar 

  20. Sankaranarayanan, V.K., Prakash, O., Pant, R.P., Islam, M.: Lithium ferrite nanoparticles for ferrofluid applications. J. Magn. Magn. Mater. 252, 7–9 (2002)

    Article  ADS  Google Scholar 

  21. Verma, K., Kumar, A., Varshney, D.: Effect of Zn and Mg doping on structural, dielectric and magnetic properties of tetragonal CuFe2O4. Curr. Appl. Phys. 13, 467–473 (2013)

    Article  ADS  Google Scholar 

  22. Verma, K., Kumar, A., Varshney, D.: Dielectric relaxation behavior of A x Co1−x Fe2O4 (A = Zn, Mg) mixed ferrites. J. Alloys Compd. 526, 91–97 (2012)

    Article  Google Scholar 

  23. Ghatak, S., Sinha, M., Meikap, A.K., Pradhan, S.K.: Alternate current conductivity and dielectric properties of nonstoichiometric nanocrystalline Mg–Zn ferrite below room temperature. Phys. E 42, 1397–1405 (2010)

    Article  Google Scholar 

  24. Gheisari, Kh., Shahriari, Sh., Javadpour, S.: Structural evolution and magnetic properties of nanocrystalline 50 permalloy powders prepared by mechanical alloying. J. Alloys Compd. 574, 71–82 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Shahid Chamran University for providing support to this research. The authors are indebted to H. Mohseni for his great assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. Gheisari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borhan, N., Gheisari, K. & Shoushtari, M.Z. Dielectric Properties of Nanocrystalline Zn-Doped Lithium Ferrites Synthesized by Microwave-Induced Glycine–Nitrate Process. J Supercond Nov Magn 29, 145–151 (2016). https://doi.org/10.1007/s10948-015-3225-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-015-3225-0

Keywords

Navigation