Skip to main content

Advertisement

Log in

Superconducting Properties of F e S e 0.5 T e 0.5 Under High Pressure

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

This work reports studies performed in the superconducting compound F e S e 0.5 T e 0.5 under high pressure. Changes were observed in the transition temperature, superconducting critical fields, anomalous variations in the Meissner fraction, and in Ginzburg Landau parameters. The superconducting properties were calculated and compared using the Werthamer-Helfand-Hohenber approximation and Ginzburg-Landau theory. Hydrostatic pressure was produced from atmospheric to 823 MPa, the increment in the critical temperature was from 14.45 to 20.5 K at a rate of change about 0.0069 K/MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kordyuk, A.A.: Low Temp. Phys. 38, 888 (2012)

    Article  ADS  Google Scholar 

  2. Miyata, Y, et al.: Nat. Mater. 14, 285 (2015)

    Article  Google Scholar 

  3. Mazin, I.: Nat. Mater 14, 755 (2015)

    Article  ADS  Google Scholar 

  4. Yeh, K.W., et al.: J. Phys. Soc. Jpn. 77, 152505 (2008)

    Google Scholar 

  5. Yeh, K.W., et al.: Eur. phys. Lett. 84, 37002 (2008)

    Article  ADS  Google Scholar 

  6. Fong-Chi, H., et al.: PNAS 105 38, 14262 (2008)

    Google Scholar 

  7. Stemshorn, A., et al.: High Press. Res. 29, 267 (2009)

    Article  ADS  Google Scholar 

  8. Yoshikazu, M., et al.: Physica C 470, 5353 (2010)

    Google Scholar 

  9. Mizuguchi, et al.: Physica C 470, S353–S355 (2010)

    Article  ADS  Google Scholar 

  10. Sales, B.C., et al.: Phys. Rev. B 79, 094521 (2009)

    Article  ADS  Google Scholar 

  11. Horigane, K., et al.: J. Phys. Soc. Jpn. 78(40143431), 074718 (2009)

    Article  ADS  Google Scholar 

  12. Stemshorn, A.K., et al.: J. Mater. Res. 25, 396 (2010)

    Article  ADS  Google Scholar 

  13. Horigane, K., et al.: J. Phys. Soc. Jpn. 78(40143095), 063705 (2009)

    Article  ADS  Google Scholar 

  14. Tsoi, G., et al.: J. Phys.: Condens. Matter 21, 232201 (2009)

    ADS  Google Scholar 

  15. Huang, Ch.-L., et al.: J. Phys. Soc. Jpn. 78, 084710 (2009)

    Article  ADS  Google Scholar 

  16. Gresty, N.C., et al.: J. Am. Chem. Soc. 131, 16944 (2009)

    Article  Google Scholar 

  17. Pallavi, M., et al.: 125701 26(12) (2014)

  18. Pietosa, J., et al.: J. Phys. Condens. Matter 24, 265701 (2012)

    Article  ADS  Google Scholar 

  19. Fedorchenko, A.V., et al.: Low Temp. Phys. 37, 83 (2011)

    Article  ADS  Google Scholar 

  20. Velasco-Soto, D., et al.: J. Appl. Phys. 113, 7E138 (2013)

    Article  Google Scholar 

  21. Awana: J. Appl. Phys. 107, 09E128 (2010)

    Google Scholar 

  22. Quantum Design, CuBe Cell manual, (2010)

  23. Kamard, J., et al.: Rev. Sci. Instrum. 75, 5022 (2004)

    Article  ADS  Google Scholar 

  24. Tegel, M., et al.: Solid State Commun. 150, 383–385 (2010)

    Article  ADS  Google Scholar 

  25. Gomez, R.W., et al.: J. Supercond. Novel Magn. 23, 551 (2010)

    Article  Google Scholar 

  26. Pimentel, J., et al.: J. Appl. Phys. 111, 033908 (2012)

    Article  ADS  Google Scholar 

  27. Amikam, A.: J. Appl. Phys. 83, 3432 (1998)

    Article  ADS  Google Scholar 

  28. Dajerowsky, D., et al.: New J. Chem. 35, 1320 (2011)

    Article  Google Scholar 

  29. Bendele, et al.: Phys. Rev B 81, 224520 (2010)

    Article  ADS  Google Scholar 

  30. Lai, C., et al.: Physica C 470, 313 (2010)

    Article  ADS  Google Scholar 

  31. Jiang, S., et al.: J. Phys. Condens. Technol. 16, l7–L9 (2003)

    Google Scholar 

  32. Zhou, F., et al.: Super. Cond. Sci. Matter 21(38), 382203 (2009)

    Article  Google Scholar 

  33. Li, L.F., et al.: Physica C 470, 313 (2010)

    Article  ADS  Google Scholar 

  34. Zhang, J.-L., et al.: Front. Phys. 6, 4 (2011)

    Google Scholar 

  35. Bezusyy, V.L., et al.: Acta Polonica series A 121(4), 816 (2012)

    Article  Google Scholar 

  36. Kao, J., et al.: Phys. Rev. B 75(1), 012503 (2007)

    Article  ADS  Google Scholar 

  37. Mineev, V.P., Samokhin, K.V.: Introduction to unconventional superconductivity. Gordon and Breach, London (1999)

    Google Scholar 

  38. Margadonna, et al., 2009: Phys. Rev. B 80, 064506

  39. Lu, H., et al.: J. Low Temp. Phys. 178, 355 (2015)

    Article  ADS  Google Scholar 

  40. Ciechan, A., et al.: Acta Physica Polonica A 121(4), 821 (2012)

    Article  Google Scholar 

  41. Koufos, A., Papaconstantopoulos, D.: Phys. Rev. B 89, 035150 (2014)

    Article  ADS  Google Scholar 

  42. Mandal, S., et al.: Phys. Rev. B 89, 220502(R) (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

EM acknowledge financial support of a scholarship given by CONACYT and PCeIM-UNAM. Also, we thanks to DGAPA-UNAM project IN106014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Escudero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Piñeiro, E., Escudero, R. Superconducting Properties of F e S e 0.5 T e 0.5 Under High Pressure. J Supercond Nov Magn 29, 891–896 (2016). https://doi.org/10.1007/s10948-015-3363-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-015-3363-4

Keywords

Navigation