Skip to main content
Log in

Magnetic Properties of Graphene Structure: a Monte Carlo Simulation

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The Monte Carlo simulation is used to study the magnetic properties of graphene structure formed by ferrimagnetic spin 5/2 and 3/2 configuration. The critical temperature is obtained for different values of exchange interactions and for different crystal fields. The total magnetization has been determinate for different values of exchange interactions, different crystal fields, and different values of temperature. The magnetic hysteresis cycle is obtained for different values of temperature, for different values of exchange interactions, and for different values of crystal fields. Graphene-based magnetoresistance sensors hold immense promise over existing sensors due to their stable performance over temperature variation, eliminating the necessity for expensive wafers or temperature correction circuitry. The potential applications for magnetic graphene would stretch broadly from information processing to medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bednorz, J.G., Müller, K.A.: Zeitschrift fur physik B-Conden. Matter 64, 189–193 (1986)

    Google Scholar 

  2. Anderson, P.W.: Science 235, 1196–1198 (1987)

    Article  ADS  Google Scholar 

  3. Pan, L., Liu, H.J., Tan, X.J., Lv, H.Y., Shi, J., Tang, X.F., Zheng, G.: Phys. Chem. Chem. Phys. 14, 13588 (2012)

    Article  Google Scholar 

  4. Zberecki, K., Wierzbicki, M., Barnaś, J., Swirkowicz, R.: Phys. Rev. B 88, 115404 (2013)

    Article  ADS  Google Scholar 

  5. Son, Y. -W., Cohen, M.L., Louie, S.G.: Nature 444, 347 (2006)

    Article  ADS  Google Scholar 

  6. Pisani, L., Chan, J. A. , Montanari, B., Harrison, N.M.: Phys. Rev. B 75, 064418 (2007)

    Article  ADS  Google Scholar 

  7. Haugen, H., Huertas-Hernando, D., Brataas, A.: Phys. Rev. B 77, 115406 (2008)

    Article  ADS  Google Scholar 

  8. Heersche, H.B., Jarillo-Herrero, P., Oestinga, J.B., Vandersypen, L.M., Morpurgo, A.F.: Nature 446, 56 (2007)

    Article  ADS  Google Scholar 

  9. Hu, C.H., Zheng, Y., Zhang, Y., Wu, S.Q., Wen, Y.H., Zhu, Z.Z.: Solid State Commun. 151, 1128–1130 (2011)

    Article  ADS  Google Scholar 

  10. Vajk, O.P., et al.: Science 295, 1691 (2002)

    Article  Google Scholar 

  11. Chernyshev, A.L., et al.: Phys. Rev. Lett. 87, 67209 (2001)

    Article  ADS  Google Scholar 

  12. Mucciolo, E.R., et al.: Phys. Rev. B 69, 214424 (2004)

    Article  ADS  Google Scholar 

  13. Sandvik, A.W.: Phys. Rev. B 66, 24418 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  14. Kataev, V., Moller, A., Low, U. , Jung, W., Schittner, N. , Kriener, M., Freimuth, A., Magn, J.: Magn. Mater. 290–291, 310–313 (2005)

    Article  Google Scholar 

  15. Yanan, T., Zongxian, Y., Xianqi, D.: J. Magn. Magn. Mater. 323, 2441–2447 (2011)

    Article  Google Scholar 

  16. Novoselov, K., Geim, A., Morozov, S., Jiang, D., Zhang, Y., Dubonos, S., Grigorieva, I., Firsov, A.: Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  17. Latil, S., Meunier, V., Henrard, L.: Phys. Rev. B 76, 201402 (2007)

    Article  ADS  Google Scholar 

  18. Mattausch, A., Pankratov, O.: Phys. Rev. Lett. 99, 76802 (2007)

    Article  ADS  Google Scholar 

  19. Stankovich, S., Dikin, D., Dommett, G., Kohlhaas, K., Zimney, E., Stach, E., Piner, R., Nguyen, S., Ruoff, R.: Nature 442, 282–286 (2006)

    Article  ADS  Google Scholar 

  20. Li, D., Muller, M., Gilje, S., Kaner, R., Wallace, G.: Nat. Nanotechnol. 3, 101–105 (2008)

    Article  ADS  Google Scholar 

  21. de Chatel, P.F., Chadwick, J., Mulders, A.M., Hicks, T.J.: Physica. B 344, 117–128 (2004)

    Article  ADS  Google Scholar 

  22. Feng, N., Mi, W., Wang, X., Bai, H.: Comput. Mater. Sci. 96, 256–262 (2015)

    Article  Google Scholar 

  23. Ertas, M.: Superlat. Microstr. 85, 734–742 (2015)

    Article  ADS  Google Scholar 

  24. Najmoddin, N., Beitollahi, A., Kavas, H., Mohseni, S.M., Rezaie, H., Åkerman, J., Toprak, M.S.: Ceramics International 40, 3619 (2014)

    Article  Google Scholar 

  25. De, K., Patra, M., Majumdar, S., Giri, S.: J. Phys. D: Appl. Phys. 41, 175007 (2008)

    Article  ADS  Google Scholar 

  26. Mettes, F.L., Luis, F., de Jongh, L.J.: Phys. Rev. B 174411, 64 (2001)

    Google Scholar 

  27. D. Gatteschi, R. Sessoli: Angew. Chem. Int. Ed. 42, 268–297 (2003)

    Article  Google Scholar 

  28. Wesselinowa, J.M., Apostolova., I.: J. Phys.: Condens. Matter 19, 406235 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Masrour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabar, A., Masrour, R. Magnetic Properties of Graphene Structure: a Monte Carlo Simulation. J Supercond Nov Magn 29, 1363–1369 (2016). https://doi.org/10.1007/s10948-016-3417-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3417-2

Keywords

Navigation