Skip to main content
Log in

Microstructural and Magnetic Features of SrFe12 O 19 Materials Synthesized from Different Fuels by Sol-Gel Auto-Combustion Method

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The nanocrystalline SrFe12 O 19 materials were prepared by a sol-gel auto-combustion method using different fuels such as citric acid, dextrose, aniline, and hexamine. The combustion product obtained from all the fuels except from that of aniline show a single phase of SrFe12 O 19 materials upon annealing at 1000 C/2 h. The combustion product obtained from aniline as fuel shows SrFe12 O 19 as the main phase with α-Fe2 O 3 as impurity. No notable change in lattice parameters is observed due to variation in fuels for SrFe12 O 19 materials. With a little change in the NIR relative reflectance (72–85 %) on fuels, the different SrFe12 O 19 materials display high NIR reflectance in the wavelength range, 1500–2500 nm. The photoluminescence emission spectra of SrFe12 O 19 materials reveal a broad emission peak at ∼350 nm which is reminiscent to the Ba-based hexaferrite, BaFe12 O 19. The FESEM images expose quite dissimilar morphology for the various fuels used in the synthesis of SrFe12 O 19 materials. Hysteresis loops for all the nanocrystalline SrFe12 O 19 materials observed under the applied field of ±1.5 T at room temperature exhibit hard ferromagnetic property. The SrFe12 O 19 materials produced from glycine and aniline as fuels exhibit highest and lowest M s values of 61.3 and 50.5 emu/g, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mali, A., Ataie, A.: Influence of Fe/Ba molar ratio on the characteristics of Ba-hexaferrite particles prepared by sol-gel combustion method. J. Alloys Compd. 399, 245–250 (2005)

    Article  Google Scholar 

  2. Jiang, J., Ai, L. H.: Facile synthesis, characterization and properties of Ba-hexaferrite/ZnO hybrid structures. Phys. B 405, 2640–2642 (2010)

    Article  ADS  Google Scholar 

  3. Shang, H., Wang, J., Liu, Q.: Synthesis and characterization of nanocrystalline BaFe12O19 obtained by using glucose as a fuel. Mater. Sci. Eng. A 456, 130–132 (2007)

    Article  Google Scholar 

  4. Mali, A., Ataie, A.: Influence of the metal nitrates to citric acid molar ratio on the combustion process and phase constitution of barium hexaferrite particles prepared by sol–gel combustion method. Ceram. Int. 30, 1979–1983 (2004)

    Article  Google Scholar 

  5. Qiu, J., Wang, Y., Gu, M.: Effect of Cr substitution on microwave absorption of BaFe12O19. Mater. Lett. 60, 2728–2732 (2006)

    Article  Google Scholar 

  6. Dhage, V. N., Mane, M. L., Babrekar, M. K., Kale, C. M., Jadhav, K. M.: Influence of chromium substitution on structural and magnetic properties of BaFe12O19 powder prepared by sol–gel auto combustion method. J. Alloys Compd. 509, 4394–4398 (2011)

    Article  Google Scholar 

  7. Mali, A., Ataie, A.: Structural characterization of nanocrystalline BaFe12O19 powders synthesized by sol-gel combustion route. Scripta Mater. 53, 1065–1070 (2005)

    Article  Google Scholar 

  8. Pullar, R. C.: Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57, 1191–1334 (2013)

    Article  Google Scholar 

  9. Sozeri, H., Durmus, Z., Baykal, A., Uysal, E.: Preparation of high quality, single domain BaFe12O19 particles by the citrate sol–gel combustion route with an initial Fe/Ba molar ratio of 4. Mater. Sci. Eng. B 177, 949–955 (2012)

    Article  Google Scholar 

  10. Chaudhury, S., Rakshit, S. K., Parida, S. C., Singh, Z., Mudher, K. D. S., Venugopal, V.: Studies on structural and thermo-chemical behavior of MFe12O19 (s) (M = Sr, Ba and Pb) prepared by citrate–nitrate gel combustion method. J. Alloys Compd. 455, 25–30 (2008)

    Article  Google Scholar 

  11. Xu, P., Han, X. J., Wang, X. H., Wang, C., Zhao, H. T., Zhang, W. J.: Effect of Ni(OH)2 coating on the electromagnetic properties of hexagonal barium ferrite. Mater. Chem. Phys. 108, 196–200 (2008)

    Article  Google Scholar 

  12. Jiang, J., Ai, L. H., Liu, L. Y.: Poly(aniline-co-o-toluidine)/ BaFe12O19 composite: preparation and characterization. Mater Lett 64, 888–890 (2010)

    Article  Google Scholar 

  13. Kostishin, V. G., Panina, L. V., Kozhitov, L. V., Timofeev, A. V., Zuzin, A. K., Kovalev, A. N.: Synthesis and multiferroic properties of M-type hexagonal SrFe12O19 ferrite ceramic. J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 9, 1152–1155 (2015)

    Article  Google Scholar 

  14. Manikandan, M., Kumar, K. S., Aparnadevi, N., Venkateswaran, C.: Hopkinson effect and temperature dependent dielectric properties of single domain SrFe,12O19 particles. Phys. Status Solidi A 212, 2179–2185 (2015)

    Article  Google Scholar 

  15. Chen, D., Zeng, D., Liu, Z.: Synthesis, structure, morphology evolution and magnetic properties of single domain strontium hexaferrite particles. Mater. Res. Express 3 (2016). doi:10.1088/2053-1591/3/4/045002

  16. Shoushtari, M. Z., Ghahfarokhi, S. E. M., Ranjbar, F.: A study of the morphological properties of SrFe12−xCoxO19 (x = 0, 0.1, 0.2) hexaferrite nanoparticles. J. Supercond. Nov. Magn. (2014). doi:10.1007/s10948-014-2887-3

    Google Scholar 

  17. Buzinaro, M. A. P., Ferreira, N. S., Cunha, F., Macedo, M. A.: Hopkinson effect, structural and magnetic properties of M-type Sm3+-doped SrFe12O19 nanoparticles produced by a proteic sol–gel process. Ceram. Int. 42, 5865–5872 (2016)

    Article  Google Scholar 

  18. He, X., Zhong, W., Yan, S., Au, C. T., Lu, L., Du, Y.: The structure, morphology and magnetic properties of Sr-ferrite powder prepared by the molten-salt method. J. Phys. D: Appl. Phys., 47 (2014). doi:10.1088/0022-3727/47/23/235002

  19. Rowley, S. E., Chai, Y. S., Shen, S. P., Sun, Y., Jones, A. T., Watts, B. E., Scott, J. F.: Uniaxial ferroelectric quantum criticality in multiferroic hexaferrites BaFe12O19 and SrFe12O19. Sci. Rep., 6 (2016). doi:10.1038/srep25724

  20. Baykal, A.: Solvothermal synthesis of pure SrFe12O19 hexaferrite nanoplatelets. J. Supercond. Nov. Magn. 27, 877–880 (2014)

    Article  Google Scholar 

  21. Wang, S. F., Zhang, C., Sun, G., Chen, B., Liu, W., Xiang, X., Wang, H., Fang, L., Tian, Q., Ding, Q., Zu, X. T.: Effect of carbon and sintering temperature on the structural and magnetic properties of SrFe12O19 nanoparticles. J Sol-Gel Sci Technol 73, 371–378 (2015)

    Article  Google Scholar 

  22. Sivakumar, P., Shani, L., Yeshurun, Y., Shaulov, A., Gedanken, A.: Facile Sonochemical Preparation and Magnetic Properties of Strontium Hexaferrite (SrFe12O19) Nanoparticles. J. Mater. Sci.: Mater. Electron. (2016). doi:10.1007/s10854-016-4482-9

    Google Scholar 

  23. Hwang, T. Y., An, G. H., Cho, J. H., Kim, J., Choa, Y. H.: Effects of different salts on salt-assisted ultrasonic spray pyrolysis (SA-USP) calcination for the synthesis of strontium ferrite. J. Nanosci. Nanotechnol. 15, 8062–8069 (2015)

    Article  Google Scholar 

  24. Nga, T. T. V., Duong, N. P., Loan, T. T., Hien, T. D.: Key step in the synthesis of ultrafine strontium ferrite powders (SrFe12O19) by sol-gel method. J. Alloys Compd. 610, 630–634 (2014)

    Article  Google Scholar 

  25. Zhang, C., Li, Q., Ye, Y.: Preparation and characterization of polypyrrole/nano- SrFe12O19 composites by in situ polymerization method. Synth. Met. 159, 1008–1013 (2009)

    Article  Google Scholar 

  26. Ghahfarokhi, S. E. M., Hosseini, S., Zargar Shoushtari, M.: Fabrication of SrFe12−xNixO19 nanoparticles and investigation on their structural, magnetic and dielectric properties. Int. J. Miner. Metall. Mater. 22, 876 (2015)

    Article  Google Scholar 

  27. Mirkazemi, S. M., Alamolhoda, S., Ghiami, Z.: Microstructure and magnetic properties of SrFe12O19 nano-sized powders prepared by sol-gel auto-combustion method with CTAB surfactant (2014)

  28. Das, A., Roychowdhury, A., Pati, S. P., Bandyopadhyay, S., Das, D.: Structural, magnetic and hyperfine properties of single-phase SrFe12O19 nanoparticles prepared by a sol-gel route. Phys. Scr. 90 (2015). doi:10.1088/0031-8949/90/2/025802

  29. Durmus, Z., Kavas, H., Durmus, A., Aktas, B.: Synthesis and micro-structural characterization of graphene/strontium hexaferrite (SrFe12O19) nanocomposites (2015)

  30. Lin, C. S., Hwang, C. C., Huang, T. H., Wang, G. P., Peng, C. H.: Fine powders of SrFe12O19 with SrTiO3 additive prepared via a quasi-dry combustion synthesis route. Mater. Sci. Eng. B 139, 24–36 (2007)

    Article  Google Scholar 

  31. Masoudpanah, S. M., Ebrahimi, S. A. S.: Synthesis and characterization of nanostructured strontium hexaferrite thin films by the sol-gel method. J. Magn. Magn. Mater. 324, 2239–2244 (2012)

    Article  ADS  Google Scholar 

  32. Jiang, J., Ai, L.H.: SrFe12O19/ZnO hybrid structures: synthesis, characterization and properties. J. Alloys Compd. 502, 488–490 (2010)

    Article  Google Scholar 

  33. Brightlin, B. C., Balamurugan, S.: The effect of post annealing treatment on the citrate sol-gel derived nanocrystalline BaFe12O19 powder: structural, morphological, optical and magnetic properties. Appl. Nanosci. 6, 1199–1210 (2016)

    Article  ADS  Google Scholar 

  34. Junliang, L., Yanwei, Z., Cuijing, G., Wei, Z., Xiaowei, Y.: One-step synthesis of barium hexaferrite nano-powders via microwave-assisted sol-gel auto-combustion. J. Eur. Ceram. Soc. 30, 993–997 (2010)

    Article  Google Scholar 

  35. Hong, Y. S., Ho, C. M., Hsu, H. Y., Liu, C. T.: Synthesis of nanocrystalline Ba(MnTi)xFe12−xO19 powders by the sol–gel combustion method in citrate acid–metal nitrates system (x = 0, 0.5, 1.0, 1.5, 2.0). J. Magn. Magn. Mater. 279, 401–410 (2004)

    Article  ADS  Google Scholar 

  36. Gonzalez, F. N. T., Miro, A. M. B., Jesus, F. S. D., Escobedo, C. A. C., Ammar, S.: Mechanism and microstructural evolution of polyolmediated synthesis of nanostructured M-type SrFe12O19. J. Magn. Magn. Mater. 407, 188–194 (2016)

    Article  ADS  Google Scholar 

  37. Patil, K. C., Hegde, M. S., Rattan, T., Aruna, S. T.: Chemistry of nanocrystalline oxide materials: combustion synthesis, properties and applications. World Scientific (2008)

  38. Kimura, K., Ohgaki, M., Tanaka, K., Morikawa, H., Marumo, F.: Study of the bipyramidal site in magnetoplumbite-like compounds, SrM12O19 (M = Al, Fe, Ga). J. Solid State Chem. 87, 186–194 (1990)

    Article  ADS  Google Scholar 

  39. Petricek, V., Dusek, M., Palatinus, L.: Jana 2006. The crystallographic computing system. Institute of Physics, Praha (2006)

  40. Balamurugan, S., Brightlin, B. C., Kiruba, V. S. A.: Synthesis of BaFe12O19 materials by mechano-thermal route: novel inorganic pigment with high near-infrared reflectance. J. Nanosci. Nanotechnol. 15, 9494–9499 (2015)

    Article  Google Scholar 

  41. Balamurugan, S., Resmi, S. P.: Synthesis of nanocrystalline BaFe12O19 materials by co-precipitation method using KOH and K2CO3 as precipitating agent. Adv. Sci. Eng. Med. 7, 183–189 (2015)

    Article  Google Scholar 

  42. Habeeba, M., Balamurugan, S., Resmi, S. P.: An efficient synthesis of nanocrystalline BaFe12O19 materials by modified coprecipitation method. AIP Conf. Proc. 1731, 050027 (2016)

    Article  Google Scholar 

  43. Jeevanandam, P., Mulukutla, R. S., Phillips, M., Chaudhuri, S., Erickson, L. E., Klabunde, K. J.: Near infrared reflectance properties of metal oxide nanoparticles. J. Phys. Chem. C 111, 1912–1918 (2007)

    Article  Google Scholar 

  44. Dor, E. B., Goldshleger, N., Benyamini, Y., Agassi, M., Blumberg, D. G.: Soil. Sci. Soc. Am. J. 67, 289 (2003)

    Article  Google Scholar 

  45. Du, X., Dong, L., Li, C., Liang, Y., Chen, Y.: Diffuse reflectance infrared Fourier transform and Raman spectroscopic studies of MoO3 dispersed on CeO2 support. Langmuir 15, 1693 (1999)

    Article  Google Scholar 

  46. Soumya, S., Peer Mohamed, A., Paul, L., Mohan, K., Ananthakumar, S.: Near IR reflectance characteristics of PMMA/ZnO nanocomposites for solar thermal control interface films. Sol. Energy Mater. Sol. Cells 125, 102–112 (2014)

    Article  Google Scholar 

  47. Viscarra Rossel, R. A., McGlynn, R. N., McBratney, A. B.: Determining the composition of mineral-organic mixes using UV–vis–NIR diffuse reflectance spectroscopy. Geoderma 137, 70–82 (2006)

    Article  Google Scholar 

  48. Bercoff, P. G., Herme, C., Jacobo, S. E.: The influence of Nd–Co substitution on the magnetic properties of non-stoichiometric strontium hexaferrite nanoparticles. J. Magn. Magn. Mater. 321(14), 2245 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors, B. C. Brightlin (BCB) and S. Balamurugan (SB), are indebted to the Tamilnadu State Council for Science and Technology (TNSCST) (Ref.: AR/PS/2012-2013/209) for the partial support to the present work. The authors (BCB and SB) are thankful to V. Sherly Arputha Kiruba for her assistance in the sample preparation. Dr. K. Vinod, Low Temperature Studies Section, Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, 603102 India, is acknowledged for extending his help in VSM measurements. The authors (BCB and SB) would also like to extend their thanks to the Noorul Islam Centre for Higher Education for the encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Balamurugan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brightlin, B.C., Balamurugan, S. & Arun, T. Microstructural and Magnetic Features of SrFe12 O 19 Materials Synthesized from Different Fuels by Sol-Gel Auto-Combustion Method. J Supercond Nov Magn 30, 1427–1437 (2017). https://doi.org/10.1007/s10948-016-3940-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3940-1

Keywords

Navigation