Skip to main content
Log in

Theoretical Investigation of Cubic BaVO3 and LaVO3 Perovskites via Tran–Blaha-Modified Becke–Johnson Exchange Potential Approach

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The full potential linearized augmented plane wave method of density functional theory has been used to investigate the structural, electronic, magnetic and thermoelectric properties of cubic perovskites BaVO3 and LaVO3. The ferromagnetic ground state has been found to be stable by comparing the total energies of non-spin-polarized and spin-polarized calculations performed for optimized unit cells. For both compounds, the bond length and tolerance factor are also measured. From the band structures and density of states plots, it is found that both compounds are half-metallic. We found that the presence of V at the octahedral site of these perovskites develops exchange splitting through p-d hybridization, which results in a stable ferromagnetic state. The observed exchange splitting is further clarified from the magnetic moment, charge and spin of the anion and cations. Finally, we also presented the calculated thermoelectric properties of these materials, which show that half-metallic BaVO3 and LaVO3 materials are potential contenders for thermoelectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Berger, R., Fennie, C., Neaton, J.B.: Phys. Rev. Lett. 107, 146804 (2011)

    Article  ADS  Google Scholar 

  2. Telegin, A., Gizhevskii, B., Nomerovannaya, L.V., Makhnev, A.A.: J. Supercond. Nov. Magn. 25, 2683 (2012)

    Article  Google Scholar 

  3. Skini, R., Khlifi, M., Dhahri, E., Hlil, E.K.: J. Supercond. Nov. Magn. 27, 247 (2014)

    Article  Google Scholar 

  4. Abbassi, A., Zaari, H., Azahaf, C., Ez-Zahraouy, H., Benyoussef, A.: J. Supercond. Nov. Magn. 29, 487 (2016)

    Article  Google Scholar 

  5. Singh, V., Sharma, S., Dwivedi, R., Kumar, M., Kotnala, R., Mehra, N., Tandon, R.P.: J. Supercond. Nov. Magn. 26, 657 (2013)

    Article  Google Scholar 

  6. Mnefgui, S., Dhahri, A., Dhahri, J., Hlil, E.K.: J. Supercond. Nov. Magn. 26, 251 (2013)

    Article  Google Scholar 

  7. Dagotto, E.: Science 309, 257 (2005)

    Article  ADS  Google Scholar 

  8. Mahmood, Q., Alay-e-Abbas, S., Mahmood, A., Yaseen, M., Mahmood, I., Noor, N.A.: J. Supercond. Nov. Magn. 29, 521 (2016)

    Article  Google Scholar 

  9. Shenoy, V., Sarma, D.D., RaoC, N.R.: Chem. Phys. Chem. 7, 2053 (2006)

    Article  Google Scholar 

  10. Zhang, J., Averitt, R.: Ann. Rev. Mater. Res. 44, 19 (2014)

    Article  ADS  Google Scholar 

  11. Varignon, J., Bristowe, N., Bousquet, E., Ghosez, P.: Sci. Rep. 5, 15364 (2015)

    Article  ADS  Google Scholar 

  12. Bordet, P., et al.: J. Solid State Chem. 106, 253 (1993)

    Article  ADS  Google Scholar 

  13. Kikuchi, J., Yasuoka, H., Kokubo, Y., Ueda, Y., Ohtani, T.: J. Phys. Soc. Jpn. 65, 2655 (1996)

    Article  ADS  Google Scholar 

  14. Blake, G., Palstra, T.T., Ren, Y., Nugroho, Menovsky, A.A.: Phys. Rev. Lett. 87, 245501 (2001)

    Article  ADS  Google Scholar 

  15. Mossanek, R.J., Abbate, M., Fonseca, P., Fujimori, A., Eisaki, H., Uchida, S., Tokura, Y.: Phys. Rev. B 80, 195107 (2009)

    Article  ADS  Google Scholar 

  16. Liu, G., Greedan, J.E.: J. Sol. St. Chem. 110, 274 (1994)

    Article  ADS  Google Scholar 

  17. Nishimura, K., Yamada, I., Oka, K., Shimakawa, Y., Azuma, M.: J. Phys. Chem. Sol. 75, 710 (2014)

    Article  ADS  Google Scholar 

  18. Yan, S.-Y., Hie, Y., Liu, T., YuH, T.: J. Phys. Cond. Matt. 22, 125501 (2010)

    Article  ADS  Google Scholar 

  19. Usman, T., Murtaza, G., Luo, H., Mahmood, A.: Supercond. Nov. Magn. (2016)

  20. El hachimi, A., Ould, N.E.M., Zaari, H., Benyoussef, A., El Kenz, A.: J. Supercond. Nov. Magn. 30, 483 (2017)

    Article  Google Scholar 

  21. Koller, D., Tran, F., Blaha, P.: Phys. Rev. B 85, 155109 (2012)

    Article  ADS  Google Scholar 

  22. Hohenberg, P., Kohn, W.: Phys. Rev. B 136, 864 (1964)

    Article  ADS  Google Scholar 

  23. Kohn, W., Sham, L.S.: Phys. Rev. A 140, 1133 (1965)

    Article  ADS  Google Scholar 

  24. Blaha, P., Schwarz, K., Madsen, G.K., Kvasnicka, D., Luitz, J.: WIEN2K, An augmented plane wave + local orbitals program for calculating crystal properties. Karlheinz Schwarz, Techn, Universität Wien, Austria (2001)

    Google Scholar 

  25. Andersen, O.K.: Phys. Rev. B 12, 3060 (1975)

    Article  ADS  Google Scholar 

  26. Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  27. Nishimura, K., Yamada, I., Oka, K., Shimakawa, Y., Azum, M.: J. Phys. Chem. Solids 75, 710 (2014)

    Article  ADS  Google Scholar 

  28. Bannikov, V.V.: Mater. Chem. Phys. 171, 119 (2016)

    Article  Google Scholar 

  29. Jiang, L., Guo, J., Liu, H., Zhu, M., Zhou, X., Wu, P., Li, C.H.: J. Phys. Chem. Solids 67, 1531 (2006)

    Article  ADS  Google Scholar 

  30. Ubic, R.: J. Am. Ceram. Soc. 90, 3326 (2007)

    Article  Google Scholar 

  31. Xu, N., et al.: J. Hydrog. Energy 35, 7295 (2010)

    Article  Google Scholar 

  32. Dang, H., Millis, A.J.: Phys. Rev. B 87, 155127 (2013)

    Article  ADS  Google Scholar 

  33. Ohta, H., Sugiura, K., Koumoto, K.: Inorg. Chem. 47, 8429 (2008)

    Article  Google Scholar 

  34. Biswas, K., He, J., Blum, I., Wu, C., Hogan, T., Seidman, D.N.: Nature 489, 414 (2012)

    Article  ADS  Google Scholar 

  35. Goldsmid, H., Douglas, R.W.: Brit. J. Appl. Phys. 5, 386–90 (1954)

    Article  ADS  Google Scholar 

  36. Tritt, T., Clarke, D., Fratzl, P. (eds.): Ann. Rev. Mater. Res. 433 412011 (2011)

  37. Walia, S., Weber, R., Balendhran, S., Yao, D., Abrahamson, J., Zhuiykov, S., et al.: Chem. Commun. 48, 7462 (2012)

    Article  Google Scholar 

  38. Walia, S., Weber, R., Latham, K., Petersen, P., Abrahamson, J.T., Strano, M.S., et al.: Adv. Funct. Mater. 21, 2072 (2011)

    Article  Google Scholar 

  39. Walia, S., Weber, R., Sriram, S., Bhaskaran, M., Latham, K., Zhuiykov, S., et al.: Energy Environ. Sci. 4, 3558 (2011)

    Article  Google Scholar 

  40. Riffat, S., Ma, X.L.: Appl. Therm. Eng. 23, 913 (2003)

    Article  Google Scholar 

  41. Walia, S., Balendhran, S., Yi, P., Yao, D., Zhuiykov, S., Pannirselvam, M., et al.: J. Phys. Chem. C 117, 9137 (2013)

    Article  Google Scholar 

  42. Pickett, W.E.: Rev. Mod. Phys. 61, 433 (1989)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors (Shahid M. Ramay and Asif Mahmood) would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this Research group No. RG 1435-004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Rashid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashid, M., Abbas, Z., Yaseen, M. et al. Theoretical Investigation of Cubic BaVO3 and LaVO3 Perovskites via Tran–Blaha-Modified Becke–Johnson Exchange Potential Approach. J Supercond Nov Magn 30, 3129–3136 (2017). https://doi.org/10.1007/s10948-017-4099-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4099-0

Keywords

Navigation