Skip to main content
Log in

Phenomenological Modeling of Magnetocaloric Effect for Ni58Fe26Ga28 Alloy

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The magnetocaloric effect (MCE) of shape memory Ni58Fe26Ga28 has been investigated. A phenomenological model is used for simulation of magnetization dependence on temperature variation to investigate magnetocaloric properties such as magnetic entropy change and heat capacity change. The results indicate the potential of Ni58Fe26Ga28 alloy to achieve the MCE at temperatures near Curie temperature. This alloy presents a good-looking approach for cooling applications in its prospective candidate for a cooling system in a wide temperature interval including room temperature. The results also confirmed that the phenomenological model is useful for prediction of the MCE for magnetic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hamad, M.A.: Low magnetic field magnetocaloric effect in Gd5−xEuxGe4. J. Supercond. Nov. Magn. 29, 1539–1543 (2016)

    Article  Google Scholar 

  2. Hamad, M.A.: Magnetocaloric effect of perovskite Eu0.5Sr0.5CoO3. J. Supercond. Nov. Magn. 27, 277–280 (2014)

    Article  Google Scholar 

  3. Ewas, A.M., Hamad, M.A.: Ceramics International 43, 7660–7662 (2017)

    Article  Google Scholar 

  4. Hamad, M.A.: J. Supercond. Nov. Magn. 29, 2867–2871 (2016)

    Article  Google Scholar 

  5. Hamad, M.A.: Tailoring Magnetocaloric Effect in La0.7Sr0.3MnO3-TiO2. J. Supercond. Nov. Magn., https://doi.org/10.1007/s10948-017-4201-7 (2017)

  6. Hamad, M.A.: J. Supercond. Nov. Magn. 27, 2569–2572 (2014)

    Article  Google Scholar 

  7. Hamad, M.A.: Monte Carlo calculations of magnetic heat capacity of La0.7Sr0.3−x MnO3−δ . J. Supercond. Nov. Magn. 28, 2525–2528 (2015)

    Article  Google Scholar 

  8. Hamad, M.A.: J. Supercond. Nov. Magn. 27, 223 (2014)

    Article  Google Scholar 

  9. Hamad, M.A.: Processing and Application of Ceramics 9, 11–15 (2015)

    Article  Google Scholar 

  10. Hamad, M.A.: Giant isothermal entropy change in (111)-oriented PMN-PT thin film. J. Adv. Dielect. 4, 1450026 (2014)

    Article  ADS  Google Scholar 

  11. Hamad, M.A.: Electrocaloric properties of Zr-modified Pb(Mg1/3Nb2/3)O3 polycrystalline ceramics. J. Adv. Dielect. 3, 1350029 (2013)

    Article  Google Scholar 

  12. Hamad, M.A.: J. Adv. Ceram. 2, 308–312 (2013)

    Article  Google Scholar 

  13. Hamad, M.A.: Theoretical investigations on electrocaloric properties of relaxor ferroelectric 0.9PbMg1/3Nb2/3 O3− 0.1PbTiO3 thin film. J. Comput. Electron. 11, 344–348 (2012)

    Article  Google Scholar 

  14. Hamad, M.A.: Lanthanum concentration effect of magnetocaloric properties in La x MnO3−δ . J. Supercond. Nov. Magn. 28, 173–178 (2015)

    Article  Google Scholar 

  15. Hamad, M.A.: J. Supercond. Nov. Magn. 26, 669 (2013)

    Article  Google Scholar 

  16. Hamad, M.A.: Arab. J. Sci. Eng. 39, 569 (2014)

    Article  Google Scholar 

  17. Chernenko, V.A., Cesari, E., Kokorin, V.V., Vitenko, I.N.: Scripta Mater. 33, 1239 (1995)

    Article  Google Scholar 

  18. Kumar, S.V., Seenithurai, S., Raja, M.M., Mahendran, M.: J. Electron. Mater. 44, 3761 (2015)

    Article  ADS  Google Scholar 

  19. Yin, R., Wendler, F., Krevet, B., Kohl, M.: Sens. Actuators, A 246, 48 (2016)

    Article  Google Scholar 

  20. Nilsén, F., Aaltio, I., Ge, Y., Söderberg, O., Glavastkyy, I., Lahelin, M., Maki, R., Hannula, S.-P.: J. Alloys Compd. 656, 408 (2016)

    Article  Google Scholar 

  21. Amin, M.A., El-Bagoury, N., Shokry, H.: Int. J. Electrochem. Sci. 8, 2791 (2013)

    Google Scholar 

  22. Heil, T.M., Willard, M.A., Reynolds, W.T.: Metall. Mater. Trans. A. 38, 752–758 (2007)

    Article  Google Scholar 

  23. Hamad, M.A.: J. Supercond. Nov. Magn. 28, 3111–3115 (2015)

    Article  Google Scholar 

  24. Hamad, M.A.: J. Supercond. Nov. Magn. 28, 3329–3333 (2015)

    Article  Google Scholar 

  25. Hamad, M.A.: J. Supercond. Nov. Magn. 28, 3365–3369 (2015)

    Article  Google Scholar 

  26. Hamad, M.A.: Theoretical work on effect of pressure on magnetocaloric properties of La0.7Ca0.3MnO3. Int. J. Thermophys. 36, 2748–2754 (2015)

    Article  ADS  Google Scholar 

  27. Hamad, M.A.: Magnetocaloric effect in La1−x Ce x MnO3. J. Adv. Ceram. 4, 206–210 (2015)

    Article  Google Scholar 

  28. Hamad, M.A.: J Therm. Anal. Calorim. 115, 523 (2014)

    Article  Google Scholar 

  29. Hamad, M.A.: Calculations of the low field magnetocaloric effect in Fe4MnSi3B x . J. Supercond. Nov. Magn. 28, 2223–2227 (2015)

    Article  Google Scholar 

  30. Goodenough, J.B.: Phys. Rev. 100, 564 (1955)

    Article  ADS  Google Scholar 

  31. Dan’kov, S.Y., Tishin, A.M., Pecharsky, V.K., Gschneidner, K.A. Jr.: Phys. Rev. B 57, 3478 (1998)

    Article  ADS  Google Scholar 

  32. Pecharsky, V.K., Gschneidner, K.A. Jr.: J. Magn. Magn. Mater. 200, 44 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud A. Hamad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Sayed, A.H., Hamad, M.A. Phenomenological Modeling of Magnetocaloric Effect for Ni58Fe26Ga28 Alloy. J Supercond Nov Magn 31, 1895–1898 (2018). https://doi.org/10.1007/s10948-017-4413-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4413-x

Keywords

Navigation