Skip to main content
Log in

Magnetocaloric Effect in BiFe1−xZnxO3 Multiferroics

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Ceramic BiFe1−xZnxO3 multiferroic samples were prepared by the solid combustion method for x = 0.1, 0.15, and 0.2. Structural, magnetic, and magnetocaloric properties of the multiferroics have been studied. For all samples, an antiferromagnetic phase transition is observed in the region of 630 K. With increase in x, the reduction in magnitude of magnetization and Neel temperature is observed. The magnetocaloric properties, entropy, relative cooling power, and heat capacity have been calculated within the framework of thermodynamic theory. It has been established that the maximum changes of magnetocaloric properties of multiferroics are observed in the region of magnetic phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aizu, K.: Phys. Rev. B. 2, 754 (1970)

    Article  ADS  Google Scholar 

  2. Schmid, H.: Ferroelectrics 162, 317 (1994)

    Article  Google Scholar 

  3. Manosa, L., Gonzalez-Alonso, D., Planes, A., Bonnot, E., Barrio, M., Tamarit, J.L., Aksoy, S., Acet, M.: Nat. Mater. 9, 478 (2010)

    Article  ADS  Google Scholar 

  4. Planes, A., Castan, T., Saxena, A.: Philos. Mag. 94, 1893 (2014)

    Article  ADS  Google Scholar 

  5. Fahler, S., Robler, U.K., Kastner, O., Eckert, J., Eggeler, G., Emmerich, H., Entel, P., Muller, S., Quandt, E., Albe, K.: Adv. Eng. Mater. 14, 10 (2012)

    Article  Google Scholar 

  6. Flerov, I., Mikhaleva, E., Gorev, M., Kartashev, A.: Phys. Solid State 57, 429 (2015)

    Article  ADS  Google Scholar 

  7. Kumar, A., Yadav, K.: J. Appl. Phys. 116, 083907 (2014)

    Article  ADS  Google Scholar 

  8. Lisenkov, S., Mani, B., Chang, C.M., Almand, J., Ponomareva, I.: Phys. Rev. B 87, 224101 (2013)

    Article  ADS  Google Scholar 

  9. Liu, Y., Infante, I.C., Lou, X., Lupascu, D.C., Dkhil, B.: Appl. Phys. Lett. 104, 012907 (2014)

    Article  ADS  Google Scholar 

  10. Starkov, A., Starkov, I.: J. Exp. Theor. Phys. 119, 258 (2014)

    Article  Google Scholar 

  11. Starkov, I.A., Starkov, A.S.: Int. J. Solids Struct. 100, 187 (2016)

    Article  Google Scholar 

  12. Teague, J.R., Gerson, R., James, W.J.: Sol. Stat. Commun. 8, 1073 (1970)

    Article  ADS  Google Scholar 

  13. Fischer, P., Polomska, M.: J. Phys. C: Sol. Stat. 13, 1931 (1980)

    Article  ADS  Google Scholar 

  14. Starkov, I., Starkov, A.: Int. J. Refrig. 37, 249 (2014)

    Article  Google Scholar 

  15. Zheng, G.-P., Sarir, U., Zheng, X., Yang, J.: J. Alloys Compd. 663, 249 (2016)

    Article  Google Scholar 

  16. Chaudhari, Y.A., Singh, A., Abuassaj, E.M., Chatterjee, R., Bendre, S.T.: J. Alloys Compd. 518, 51 (2012)

    Article  Google Scholar 

  17. Amirov, A.A., Kamilov, I.K., Yusupov, D.M., Reznichenko, L.A., Razumovskaya, O.N., Verbenko, I.A.: Phys. Procedia 75, 10 (2015)

    Article  ADS  Google Scholar 

  18. Kozakov, A.T., Kochur, A.G., Torgashev, V.I., Googlev, K.A., Kubrin, S.P., Trotsenko, V.G., Bush, A.A., Nikolskii, A.V.: J. Alloys Compd. 664, 392 (2016)

    Article  Google Scholar 

  19. Prado-Gonjal, J., Ávila, D., Villafuerte-Castrejón, M.E., González-García, F., Fuentes, L., Gómez, R.W., Pérez-Mazariego, J.L., Marquina, V., Morán, E.: Solid State Sci. 13, 2030 (2011)

    Article  ADS  Google Scholar 

  20. Hamad, M.A.: Phase Transit. 85, 106 (2012)

    Article  Google Scholar 

  21. M’nassri, R., Cheikhrouhou, A.: J. Supercond. Nov. Magn. 27, 421 (2014)

    Article  Google Scholar 

  22. Franco, V., Conde, A., Kiss, L.F.: J. Appl. Phys. 104, 033903 (2008)

    Article  ADS  Google Scholar 

  23. Phan, M.H., Yu, S.C.: J. Magn. Magn. Mater. 308, 325 (2007)

    Article  ADS  Google Scholar 

  24. Foldeaki, M., Chahine, R., Bose, T.K.: J. Appl. Phys. 77, 3528 (1995)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. M. Guseinov (Amirkhanov Institute of Physics Daghestan Scientific Center, Russian Academy of Sciences) and Dr. K. Chichay (Immanuel Kant Baltic Federal University) for the help in measurements.

Funding

This work was partially supported by projects “Phase transitions, magnetotransport, magnetocaloric, magnetoelectric phenomena in strongly correlated electron systems” (No. 0203-2016-0009) at the Institute of Physics of Dagestan Scientific Center of Russian Academy of Sciences and 5 top 100 Russian Academic Excellence Project at the Immanuel Kant Baltic Federal University. The work was partially supported by the Ukrainian State Foundation for Basic Research, project F71/46-2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Amirov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirov, A.A., Makoed, I.I., Chaudhari, Y.A. et al. Magnetocaloric Effect in BiFe1−xZnxO3 Multiferroics. J Supercond Nov Magn 31, 3283–3288 (2018). https://doi.org/10.1007/s10948-018-4590-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4590-2

Keywords

Navigation