Skip to main content
Log in

Flux Pinning Characteristics and Irreversibility Field of Cu0.5Tl0.5Ba2Ca3Cu4O12−δ thin films

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Flux pinning characteristics of Cu0.5Tl0.5Ba2Ca3Cu4O12−δ samples synthesized by two-step solid-state reaction method have been studied by physical properties measurement system (PPMS). These thin films are oriented along c-axis and have shown the tetragonal crystal structure. In the resistivity measurements, these samples have shown Tc (R = 0) around 106 K. Asymmetric M vs. H loop of the samples at various temperature shows the interaction bulk and surface pinning. The energy of activation derived from the slope of Log(Jc) vs. reduced temperature enhances with the increase strength of applied field. The irreversibility field suppress with the increase in the measurement temperature. The pinning energy per unit length of flux votex ε and the de-pinning force also suppress with increase of measurement temperature. The Hc1, Hc, and Hc2 (hence the Hirr) are suppress with the increase of measurement temperature, since the Hc determines the free energy difference between the normal and superconducting state. The increase in the Hc at lower temperature shows that the density of superconducting electrons increases with the suppression of temperatures. The enhancement in the density of superconducting carriers at low temperatures would increase the coherence length and suppress the population of flux vortices. It can be seen in the form of decreased values of Ginzburg Landau parameter κ and the penetration depth λD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Khan, N.A., Sekita, Y., Tateai, F., Kojim, T., Ishida, K., Terada, N., Ihara, H.: Physica C 320, 39–44 (1999)

    Article  ADS  Google Scholar 

  2. Tinkham, M.: Introduction to Superconductivity, 2nd edn. McGraw-Hill, New York (1996)

    Google Scholar 

  3. González-Jorge, H., Peleteiro, J., Carballo, E., Romanì, L., Domarco, G.: Appl. Phys. Lett. 81, 4207 (2002)

    Article  ADS  Google Scholar 

  4. Obara, H., Kosaka, S., Yokoyam, Y., Umeda, M., Kimura, Y.: Zero-field-cooled, field-cooled and remanent magnetization of epitaxial YBa2Cu3Oy films. In: Hayakawa, H., Koshizuka, N (eds.) Advances in Superconductivity IV, pp 759–762. Springer, Tokyo (1992)

  5. Eilenberger, G.: Z. Phys. 214, 195 (1968)

    Article  ADS  Google Scholar 

  6. Larkin, A.I., Ovchinnikov, Yu. N.: J. Low Temp. Phys. 34, 409 (1979)

    Article  ADS  Google Scholar 

  7. Fisher, D.S., Fisher, M.P.A., Huse, D.A.: Phys. Rev. B 43, 130 (1991)

    Article  ADS  Google Scholar 

  8. Schmidt, V.V.: The Physics of Superconductors, 1st edn. Springer, Berlin (1997)

    Book  Google Scholar 

  9. Wu, X.D., Inam, A., Venkatesan, T., Chang, C.C., Chase, E.W., Barboux, P., Tarascon, J.M., Wilkens, B.: Appl. Phys. Lett. 52, 754 (1988)

    Article  ADS  Google Scholar 

  10. Dijkkamp, D., Venkatesan, T., Wu, X.D., Shaheen, S.A., Jisrawi, N., Min-Lee, Y.H., McLean, W.L., Croft, M.: Appl. Phys. Lett. 51, 619 (1987)

    Article  ADS  Google Scholar 

  11. Johs, B., Thompson, D., Ianno, N.J., Woollam, J.A., Liou, S.H., Hermann, A.M., Sheng, Z.Z., Kiehl, W., Shams, Q., Fei, X., Sheng, L., Liu, Y.H.: Appl. Phys. Lett. 54, 1810 (1989)

    Article  ADS  Google Scholar 

  12. Orienstein, J., Mills, A.M.: Science 288, 468 (2000)

    Article  ADS  Google Scholar 

  13. Va Tendelo, G., Antipov, E.V., Putlin, S.N.: High Temperature Superconductors and Novel Inorganic Materials, p 388. Luuwer Academic Publishers, Dordrecht (1998). ISBN O-7923-5345-5

    Google Scholar 

  14. Khan, N.A., Manzoor, A.: J. Appl. Phys. 105, 113923 (2009)

    Article  ADS  Google Scholar 

  15. Khan, N.A., Nawaz, S.: J. Alloys Compd. 487, 243–252 (2009)

    Article  Google Scholar 

  16. Khan, N.A., Hussain, S.: Physica C 470, 51–54 (2010)

    Article  ADS  Google Scholar 

  17. Khurram, A.A., Khan, N.A.: Supercond. Sci. Technol. 19, 670–684 (2006)

    Article  ADS  Google Scholar 

  18. Khan, N.A., Kameli, P., Khurram, A.A: Supercond. Sci. Technol. 19, 410–414 (2006)

    Article  ADS  Google Scholar 

  19. Khan, N.A., Sabeeh, K.: Physica B 349, 156–158 (2004)

    Article  ADS  Google Scholar 

  20. Khan, N.A., Sekit, Y., Ihara, H.: Supercond. Sci. Technol. 15613–618 (2002)

  21. Dam, B., Huijbregtse, J.M., Klaassen, F.C., van der Geest, R.C.F., Doornbos, G., Rector, J.H., Testa, A.M., Freisem, S., Martinez, J.C., Stäuble-Pümpin, B., Griessen, R.: Nature 399, 439 (1999)

    Article  ADS  Google Scholar 

  22. Tang, X., Zhao, Y., Wu, W., Andersen, N.H., Grivel, J.-C.: J. Eur. Ceram. Soc. 35, 1761 (2015)

    Article  Google Scholar 

  23. Bean, C.P.: Phys. Rev. Lett. 8, 250 (1962)

    Article  ADS  Google Scholar 

  24. Bean, C.P.: Rev. Mod. Phys. 36, 31 (1964)

    Article  ADS  Google Scholar 

  25. Xu, Y., Suenag, M.: Phys. Rev. B 43, 5516 (1991)

    Article  ADS  Google Scholar 

  26. Watanabe, K., Awaji, S.: Tohoku Univ. Sci. Rep. RITU A42, 317 (1996)

    Google Scholar 

  27. Theuss, H., Kronmueller, H.: Physica C 173, 253 (1991)

    Article  ADS  Google Scholar 

  28. Kes, H.P.: Physica C 18–189, 288 (1991)

    Article  Google Scholar 

  29. Nelson, D.R., Vinokur, V.M.: Phys. Rev. B 48, 14060 (1993)

    Article  ADS  Google Scholar 

  30. Tachiki, M., Takahashi, S.: Solid State Commun. 70, 291 (1989)

    Article  ADS  Google Scholar 

  31. Rachowski, M.S., Benz, S.P., Tinkham, M., Lobb, C.: Phys. Rev. B 42, 2041 (1990)

    Article  ADS  Google Scholar 

  32. Livingston, J.D.: J. Appl. Phys. 34, 3028 (1963)

    Article  ADS  Google Scholar 

  33. Livingston, J.D.: Rev. Mod. Phys. 36, 54 (1964)

    Article  ADS  Google Scholar 

  34. Livingston, J.D.: Appl. Phys. Lett. 8, 319 (1966)

    Article  ADS  Google Scholar 

  35. National Research Council: Scientific challenges and opportunities with higher fields. In: Opportunities in high magnetic field science. The National Academies Press, Washington, DC (2005), https://doi.org/10.17226/11211

  36. Nelson, D.R., Vinokur, V.M.: Phys. Rev. B 48, 13060 (1993)

    Article  ADS  Google Scholar 

  37. Rzchowski, M.S., Benz, S.P., Tinkham, M., Lobb, C.J.: Phys. Rev. B 42, 2041 (1990)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nawazish A. Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, N.A., Safeer, S.H., Raza, A. et al. Flux Pinning Characteristics and Irreversibility Field of Cu0.5Tl0.5Ba2Ca3Cu4O12−δ thin films. J Supercond Nov Magn 32, 1163–1170 (2019). https://doi.org/10.1007/s10948-018-4805-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4805-6

Keywords

Navigation